Use of “New Generation” Distiller’s Dried Grains with Solubles in Livestock and Poultry Production Systems

Dr. Jerry Shurson
Professor
Department of Animal Science
University of Minnesota
What is DDGS?

- Co-product of the dry-milling ethanol industry
 - Corn DDGS - Midwestern US
 - Wheat DDGS - Canada
 - Sorghum (milo) DDGS - Great Plains US
 - Barley DDGS
 - Rye DDGS
DDGS Quality is Variable

- Color ranges from very light to very dark
- Odor ranges from sweet to smoky or burnt
- Range in concentration in selected nutrients:
 - Dry matter – 87 to 93%
 - Crude protein – 23 to 29%
 - Crude fat – 3 to 12%
 - Ash – 3 to 6%
 - Lysine – 0.59 to 0.89%

Source: Cromwell et al. (1993)
“New Generation” vs. “Old Generation” DDGS

Lower Quality, Less Digestible DDGS

High Quality, Highly Digestible DDGS
Considerations for Selecting DDGS Sources for Swine and Poultry

- Must be golden color
 - “New Generation” DDGS has higher amino acid digestibility compared to “old generation” DDGS

- Produced by new Midwestern plants
 - Higher nutrient content and digestibility than DDGS from “old generation” plants
The Use of DDGS in Swine Diets
Nutritional Value of “New Generation” DDGS for Swine

- “New Generation” DDGS is higher in digestible nutrients compared to “Old Generation” DDGS

- Economical partial replacement for:
 - corn
 - soybean meal
 - dicalcium phosphate

- Value added properties
 - reduce P excretion in manure
 - increase litter size weaned/sow
 - gut health benefits?
Maximum Inclusion Rates of “New Generation” DDGS in Swine Diets
(Based Upon University of Minnesota Performance Trials)

- Nursery pigs (> 7 kg)
 - Up to 25%

- Grow-finish pigs
 - Up to 20% (higher levels may reduce pork fat quality)

- Gestating sows
 - Up to 50%

- Lactating sows
 - Up to 20%

Assumptions: no mycotoxins
formulate on a digestible amino acid and available phosphorus basis
The Use of DDGS in Poultry Diets
Nutritional Value of DDGS for Poultry

- Must use “new generation” DDGS
 - Light color = high amino acid digestibility
- Excellent energy and available phosphorus source
- Nutritional value higher than previously thought
- Unidentified growth factors?
 - 5% DDGS resulted in 17-32% improvement in gain
 - 3% DDGS in turkey breeder hen diets increased egg numbers and hatch
- Effective partial replacement for corn and soybean meal
Recommended Inclusion Rates of DDGS for Poultry

- Broilers and Turkeys
 - 5-10% inclusion rates (Starter/Finisher)
 - Without energy adjustments
 - > 10%
 - With adjustments for lys, met, thr, trp, and energy

- Chicken Egg Layers
 - 10% inclusion rate
The Use of DDGS in Dairy Rations
Nutritional Value of DDGS for Dairy Cows

- Excellent protein source (28% crude protein)
- High in by-pass protein
- High in NDF (44%)
- Very palatable – increases dry matter intake
- Effective partial replacement for corn and soybean meal
Recommended Feeding Levels of DDGS for Dairy Cows and Replacements

- **Lactating dairy cows**
 - Up to 30% DMI under normal feeding conditions
 - > 30% DMI if BST is used

- **Calves**
 - Up to 20% DMI

- **Replacement heifers**
 - Up to 25% DMI
The Use of DDGS in Beef Rations
Nutritional Value of DDGS for Beef Cattle

- Excellent protein source (28% crude protein)
- High by-pass protein
- Excellent source of essential minerals (P and K)
- Improves rumen health
- Very palatable
- 1.8 times more value compared to soybean meal
Recommended Feeding Levels of DDGS for Beef Cattle

- Creep feeding
 - Up to 20%

- Feedlot cattle
 - Up to 40% DMI

- Receiving/starting cattle
 - Up to 20%

- Brood cows
 - Up to 35% of supplement
We have developed a DDGS web site featuring:

* research summaries
 - swine, poultry, dairy, & beef
 - DDGS quality
* presentations given
* links to other DDGS related web sites
* international audiences