Increasing the Utilization of Distiller’s Dried Grains with Solubles in Livestock and Poultry Production Systems

Dr. Jerry Shurson
Professor
Department of Animal Science
University of Minnesota
Components of Yellow Dent Corn

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starch</td>
<td>61.0 %</td>
</tr>
<tr>
<td>Corn Oil</td>
<td>3.8 %</td>
</tr>
<tr>
<td>Protein</td>
<td>8.0 %</td>
</tr>
<tr>
<td>Fiber</td>
<td>11.2 %</td>
</tr>
<tr>
<td>Moisture</td>
<td>16.0 %</td>
</tr>
</tbody>
</table>

Production of DDGS

- Yeasts and enzymes are used to ferment the starch fraction of corn
- Ethanol and carbon dioxide are produced
- Distiller’s grain and distiller’s solubles are the residues remaining after fermentation
- These fractions and blended and dried to produce distiller’s dried grains with solubles (DDGS)
Corn Dry-Milling Process Overview

Corn Cleaning

- Hammermill
- Mix Slurry
- Liquefaction
- Cooker
- Fermentation
- Evaporator
- Centrifuge
- Rotary Dryer
- Distillers Wet Grains
- Distillers Dried Grains with Solubles
- Cond. Distillers Solubles

Feed Industry Co-products

- Ethanol: 2.7 gallons
- DDGS: 18 lbs
- CO₂: 18 lbs

Dry-Milling Average Yield Per Bushel

Slide courtesy of Ms. Kelly Davis, CVEC
Map of U.S. Ethanol Plants

Source: Bryan & Bryan Inc. September 1999
DDGS Production and Use

- 3.2 to 3.5 million metric tonnes (MT) of DDGS are produced in North America/year
 - ~ 900,000 MT produced in MN-Dakota region
 - ~ 700,000 MT exported to the EU
 - ~ 2.65 million MT fed in U.S. and Canada
 - ~ 2.58 million MT (80%) fed to ruminants
 - ~ 45,000 MT fed in MN turkey industry
 - ~ 27,000 MT used in swine diets

Markets for DDGS Produced in North America

- Ruminants
- MN Turkey
- Swine
- Exported EU
The Minnesota Ethanol Industry

- 145 million bu. of corn is made into ethanol and other products (14% of MN crop)
- 14 plants produce
 - 300 million gallons of ethanol/yr
 - 1.4 million tons of DDGS
- Existing plants have (are expanding) and new plants are being built

WHAT DO WE DO WITH ALL OF THE DDGS THAT WILL BE PRODUCED?

Source: Ralph Groshen, Minnesota Dept. of Agriculture (2000)

Options for Increasing Markets for DDGS

- Domestic use (most feasible)
 - Dairy and beef
 - Some opportunity
 - Swine and poultry
 - Significant opportunity but must be high quality
 - "Produce it and feed in our own backyard"
- Exports (some opportunities?)
 - High transportation costs
 - Poor geographical location of plants
Options for Increasing Markets for DDGS

- Value added components of DDGS

 What are the possibilities?

 - High insoluble fiber may improve gut health of pigs and poultry
 - May have advantages for improving on-farm food safety production procedures (e.g. Salmonella reduction)
 - Solubles may contain biologically active compounds that could provide growth and/or reproductive benefits

The Use of DDGS in Dairy Rations
Nutritional Value of DDGS for Dairy Cows

- Excellent protein source (28% crude protein)
- High in by-pass protein
- High in NDF (44%)
- Very palatable – increases dry matter intake
- Effective partial replacement for corn and soybean meal

Recommended Feeding Levels of DDGS for Dairy Cows and Replacements

- Lactating dairy cows
 - Up to 30% DMI under normal feeding conditions
 - > 30% DMI if BST is used
- Calves
 - Up to 20 % DMI
- Replacement heifers
 - Up to 25% DMI
The Use of DDGS in Beef Rations

Nutritional Value of DDGS for Beef Cattle

- Excellent protein source (28% crude protein)
- High by-pass protein
- Excellent source of essential minerals (P and K)
- Improves rumen health
- Very palatable
- 1.8 times more value compared to soybean meal
Recommended Feeding Levels of DDGS for Beef Cattle

- Creep feeding
 - Up to 20%

- Feedlot cattle
 - Up to 40% DMI

- Receiving/starting cattle
 - Up to 20%

- Brood cows
 - Up to 35% of supplement

The Use of DDGS in Swine Diets
Nutritional Value of DDGS for Swine

- Must use high quality DDGS
 - Light color = high amino acid digestibility
- Excellent energy and available phosphorus source
- Nutritional value higher than previously thought
- May improve gut health (i.e. ileitis, gut edema)
 - Decreased mortality and improved growth performance
- Effective partial replacement for corn and soybean meal

Maximum Recommended Inclusion Rates of DDGS in Swine Diets

- Nursery pigs (>15 lbs)
 - Up to 25%
- Grow-finish pigs
 - Up to 20% (higher levels reduce pork fat quality)
- Gestating sows
 - Up to 40%
- Lactating sows
 - Up to 20%
The Use of DDGS in Poultry Diets

Nutritional Value of DDGS for Poultry

- Must use high quality DDGS
 - Light color = high amino acid digestibility
- Excellent energy and available phosphorus source
- Nutritional value higher than previously thought
- Unidentified growth factors?
 - 5% DDGS resulted in 17-32% improvement in gain
 - 3% DDGS in turkey breeder hen diets increased egg numbers and hatch
- Effective partial replacement for corn and soybean meal
Recommended Maximum Inclusion Rates of DDGS in Turkey Diets

- Turkey poults
 - Up to 2.5%
- Turkey grow-finish
 - Up to 12%

Recommended Feeding Levels of DDGS for Broilers

- Broiler chicks – up to 2.5%
- Broiler finisher – up to 5.0%
Recommended Maximum Inclusion Rates of DDGS in Layer Diets

- Layers – up to 15%
- Breeders – up to 20%
- Pullets – up to 5%

DDGS Quality is Highly Variable

- Nutritionists want PREDICTABILITY AND CONSISTENCY in feed ingredients.
- The keys for getting maximum value from DDGS are:
 “Know what you have (or want)”
 And
 “Know how to use it”
DDGS Quality is Highly Variable

- Color ranges from very light to very dark
- Odor ranges from sweet to smoky or burnt
- Range in concentration in selected nutrients:
 - Dry matter – 87 to 93%
 - Crude protein – 23 to 29%
 - Crude fat – 3 to 12%
 - Ash – 3 to 6%
 - Lysine – 0.59 to 0.89%

Source: Cromwell et al. (1993)

Growth of Chicks Fed Nine Sources of DDGS

![Bar chart showing growth of chicks fed different sources of DDGS. The x-axis represents DDGS sources (A to I), and the y-axis represents grams per day. The chart shows varying levels of growth for each source.](image-url)
Feed Conversion of Chicks Fed Nine Sources of DDGS

![Bar chart showing feed conversion of chicks fed nine sources of DDGS.]

Considerations for Selecting DDGS Sources for Swine and Poultry

- Must be golden color
 - higher amino acid digestibility
- Produced by new Midwestern plants
 - higher nutrient content and digestibility than DDGS from older plants
Quality Considerations for Selecting DDGS Sources for Swine and Poultry

- Nutrient Specifications
 - Moisture – maximum 12%
 - Protein – minimum 26.5%
 - Fat – minimum 10%
 - Fiber – maximum 7.5%
Quality Considerations for Selecting DDGS Sources for Swine and Poultry

- **Physical characteristics**
 - Bulk density – .44 to .48 kg/cubic meter
 - Particle size:
 - maximum coarse particles - 10% on 2000 screen
 - maximum fine particles - 15% on 600 screen & in pan
 - Smell – fresh, fermented
 - Color – goldenrod

Nutrient Profile of Corn Distiller’s Dried Grains with Solubles

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>MW DDGS</th>
<th>Low Quality DDGS</th>
<th>NRC (1998)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter, %</td>
<td>88.9</td>
<td>88.3</td>
<td>93.0</td>
</tr>
<tr>
<td>Crude protein, %</td>
<td>30.2</td>
<td>28.1</td>
<td>29.8</td>
</tr>
<tr>
<td>Fat, %</td>
<td>10.9</td>
<td>8.2</td>
<td>9.0</td>
</tr>
<tr>
<td>Fiber, %</td>
<td>8.8</td>
<td>7.1</td>
<td>4.8</td>
</tr>
<tr>
<td>Calcium, %</td>
<td>0.06</td>
<td>0.44</td>
<td>0.22</td>
</tr>
<tr>
<td>Phosphorus, %</td>
<td>0.89</td>
<td>0.90</td>
<td>0.83</td>
</tr>
<tr>
<td>P availability, %</td>
<td>90.0</td>
<td>?</td>
<td>79.0</td>
</tr>
<tr>
<td>DE, kcal/kg</td>
<td>3965</td>
<td>3874</td>
<td>3449</td>
</tr>
<tr>
<td>ME, kcal/kg</td>
<td>3592</td>
<td>3521</td>
<td>3038</td>
</tr>
<tr>
<td>Lys, %</td>
<td>0.83</td>
<td>0.53</td>
<td>0.67</td>
</tr>
<tr>
<td>App. Dig. Lys, %</td>
<td>0.44</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Met, %</td>
<td>0.55</td>
<td>0.50</td>
<td>0.54</td>
</tr>
<tr>
<td>App. Dig. Met, %</td>
<td>0.32</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>Thr, %</td>
<td>1.13</td>
<td>0.98</td>
<td>1.01</td>
</tr>
<tr>
<td>App. Dig. Met, %</td>
<td>0.62</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>Trp, %</td>
<td>0.24</td>
<td>0.19</td>
<td>0.27</td>
</tr>
<tr>
<td>App. Dig Trp, %</td>
<td>0.15</td>
<td>0.15</td>
<td></td>
</tr>
</tbody>
</table>
Limitations of Using DDGS in Swine Diets

- Must be golden color and highly digestible
- High fiber limits its use in starter diets
- Excess nitrogen can be minimized by using synthetic amino acids
- High oil content limits maximum inclusion rates in grow-finish diets due to pork fat quality

Maximizing the Value of Corn DDGS in Swine Diets

- Formulate diets using digestible amino acid values
- High available P reduces the level of dietary P supplementation
- Adding 5 to 10% DDGS to grow-finish diets appears to reduce mortality due to ileitis and gut edema
Example Swine Grower Diet with Containing 20% DDGS

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>%</th>
<th>Nutrient Composition</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>60.05</td>
<td>Crude protein, %</td>
<td>19.07</td>
</tr>
<tr>
<td>DDGS</td>
<td>20.00</td>
<td>App. Dig. Lysine, %</td>
<td>0.74</td>
</tr>
<tr>
<td>Soybean meal, 46%</td>
<td>17.70</td>
<td>App. Dig. M + C, %</td>
<td>0.51</td>
</tr>
<tr>
<td>Dicalcium phosphate</td>
<td>0.60</td>
<td>App. Dig. Thr., %</td>
<td>0.48</td>
</tr>
<tr>
<td>Limestone</td>
<td>1.05</td>
<td>App. Dig. Trp, %</td>
<td>0.15</td>
</tr>
<tr>
<td>Salt</td>
<td>0.30</td>
<td>ME, kcal/kg</td>
<td>3309</td>
</tr>
<tr>
<td>Vitamin-TM premix</td>
<td>0.15</td>
<td>Ca, %</td>
<td>0.60</td>
</tr>
<tr>
<td>L-lysine HCl</td>
<td>0.15</td>
<td>P, %</td>
<td>0.53</td>
</tr>
<tr>
<td>Phytase - 1000</td>
<td>0.05</td>
<td>Avail. P, %</td>
<td>0.30</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example Swine Grower Diet with Containing 20% DDGS and 100 FTU/kg Phytase

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>%</th>
<th>Nutrient Composition</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>60.70</td>
<td>Crude protein, %</td>
<td>19.10</td>
</tr>
<tr>
<td>DDGS</td>
<td>20.00</td>
<td>App. Dig. Lysine, %</td>
<td>0.74</td>
</tr>
<tr>
<td>Soybean meal, 46%</td>
<td>17.65</td>
<td>App. Dig. M + C, %</td>
<td>0.51</td>
</tr>
<tr>
<td>Dicalcium phosphate</td>
<td>0.05</td>
<td>App. Dig. Thr., %</td>
<td>0.48</td>
</tr>
<tr>
<td>Limestone</td>
<td>0.95</td>
<td>App. Dig. Trp, %</td>
<td>0.15</td>
</tr>
<tr>
<td>Salt</td>
<td>0.30</td>
<td>ME, kcal/kg</td>
<td>3330</td>
</tr>
<tr>
<td>Vitamin-TM premix</td>
<td>0.15</td>
<td>Ca, %</td>
<td>0.44</td>
</tr>
<tr>
<td>L-lysine HCl</td>
<td>0.15</td>
<td>P, %</td>
<td>0.43</td>
</tr>
<tr>
<td>Phytase - 1000</td>
<td>0.05</td>
<td>Avail. P, %</td>
<td>0.20</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Calculating the Value of DDGS in Swine Diets Using Soybean Meal 44%

Additions/1000 kg diet
+ 100 kg DDGS x cost/kg = $
+ 1.5 kg limestone x cost/kg = $
TOTAL ADDITIONS (A) = $

Subtractions/1000 kg diet
- 88.5 kg corn x cost/kg = $
- 10 kg SBM (44%) x cost/kg = $
- 3 kg dicalcium phosphate x cost/kg = $
TOTAL SUBTRACTIONS (S) = $

S - A = Opportunity cost for DDGS/100 kg

Calculating the Value of DDGS in Swine Diets Using Soybean Meal 46%

Additions/1000 kg diet
+ 100 kg DDGS x cost/kg = $
+ 1.5 kg limestone x cost/kg = $
TOTAL ADDITIONS (A) = $

Subtractions/1000 kg diet
- 89 kg corn x cost/kg = $
- 9.5 kg SBM (46%) x cost/kg = $
- 3 kg dicalcium phosphate x cost/kg = $
TOTAL SUBTRACTIONS (S) = $

S - A = Opportunity cost for DDGS/100 kg
We have developed a DDGS web site featuring:
* research summaries (swine, poultry, dairy, & beef)
* presentations given
* links to other DDGS related web sites

Visit this web site at:
www.ddgs.umn.edu