Are Antibiotics a Concern in Distiller’s Co-products?

G.C. Shurson¹, D.M. Paulus¹, A. DiCostanzo¹, G.I. Crawford², F. Diez-Gonzalez³, and R.C. Fink³

¹Department of Animal Science
²University of Minnesota Extension
³Department of Food Science and Nutrition
University of Minnesota, St. Paul, U.S.A.
U.S. DDGS production

- Currently 207 ethanol plants in 29 states
 - 16 plants idle, 5 under construction
 - Majority are dry-grind vs. wet mill
 - Most have capacity to produce 378 million L ethanol produced/yr
 - Plants operate 354 days/yr
 - 378 million L plants produce 5,625 MT tons of DDGS/week
 - Plant DDGS storage capacity is <1 wk

- 2012 – 36.5 million MT wet and dried distillers grains will be produced
U.S. DDGS production and exports (Sep-Aug Marketing Year)
Distribution of DDGS use in food animal production in the U.S.

- Dairy: 40%
- Beef: 40%
- Swine: 10%
- Poultry: 9%
- Other: 10%
Antibiotics are used in ethanol and DDGS production

• Bacterial contamination during fermentation is a challenge in ethanol production.
 ▫ Lactic acid producing bacteria (Lactobacillus, Pediococcus, Leuconostoc, and Weissella) are most common
 ▫ Bischoff et al. (2009).
 ▫ Bacteria compete with yeast for sugars and micronutrients
 ▪ Reduce ethanol yield by 1 to 5% (Narendranath et al., 1997)
 ▪ Reduce DDGS quality and nutritional value

• Antibiotics have been used to manage this problem for many years.
What antibiotics are used in ethanol production?

- **PhibroChem**
 - Lactrol™ – virginiamycin

- **Lallemand**
 - Lactoside 247™ – penicillin and virginiamycin
 - Lactoside V™ – virginiamycin
 - Allpen Special™ – penicillin

- **FermSolutions**
 - Fermguard™
 - Fermguard Sentry™ – virginiamycin
 - Fermguard Extreme™ – erythromycin, penicillin, virginiamycin

- **North American Bioproducts Corp.**
 - Bactenix® V60 – penicillin
 - Bactenix® V300 – erythromycin
What antibiotics are used?

- No published data are available
- Virginiamycin and penicillin are GRAS listed.
Results from 2008 FDA multi-state distiller’s grains sampling survey - unpublished

• A multi-analyte HPLC residue detection method was used
 • de Alwis and Heller (2010)
 • Detection level > 0.1 ppm (DM basis)

• Antibiotic residues were detected in 24 of 45 samples (53%)
 • Virginiamycin residues (33%)
 • Erythromycin residues (27 %)
 • Tylosin residues (11%)

• No determinations were made for biological activity (bacterial inhibition) of residues

• Currently, there is no regulatory monitoring or enforcement of antimicrobial residues in distillers co-products produced by fuel ethanol plants.
Antibiotic residues in distillers grains study - University of Minnesota

• Objectives
 ▫ Collect wet and dried distillers co-products samples from multiple geographical locations and dry-grind ethanol plants in the U.S.
 ▫ Analyze for antibiotic residues
 • Virginiamycin
 • Penicillin
 • Erythromycin
 • Tetracycline
 • Tylosin
 ▫ Determine the extent of any antimicrobial activity of samples using the sentinel bacteria
 • Escherichia coli (ATCC 8739)
 • Listeria monocytogenes (ATCC 19115)
Antibiotic residues in distillers grains study - University of Minnesota

- **Sample collection (4 quarters/year)**
 - 20 wet and 20 dried distillers grain samples/quarter
 - 34 dry-grind ethanol plants
 - 8 Midwestern U.S. states
 - Collected by independent nutritional consultants
 - Frozen (-21 °C) upon arrival

- **Sample analysis**
 - SGS North America (Brookings, SD) determined:
 - Presence and level of residues (de Alwis and Heller, 2010)
 - Erythromycin
 - Penicillin
 - Tylosin
 - Tetracycline
 - Antimicrobial inhibition using sentinel bacteria
 - *E. coli* ATTC 8739
 - *L. monocytogenes* ATTC 19115
 - PhibroChem EPG determined:
 - Presence and level of virginiamycin residues using the FDA approved bioassay
Antibiotic residues study - University of Minnesota

- **Bacterial Thresholds**
 - Determined for residues with sentinel bacterial concentrations of 10^4, 10^5, 10^6, and 10^7
 - Sentinel bacteria cultured with the antibiotic extract in broth for 18 to 24 h at 37°C
 - Examined for bacterial growth

- **Bacterial Inhibition**
 - Antibiotic extracts plated with sentinel bacterial concentrations of 10^4, 10^5, 10^6, and 10^7
 - Plated on tryptic soy agar and incubated at 37°C for 18 to 24 h
 - Bacterial colonies counted and recorded as colony forming units (CFU) per mL
Preliminary results

- Residue data from first 3 quarters of sampling
 - 116 samples have been analyzed for Virginiamycin
 - 116 samples (58 wet and 58 dried) have been analyzed for:
 - Tetracycline
 - Tylosin
 - Erythromycin
 - Penicillin
 - 116 sample extracts tested for inhibitory properties with sentinel bacteria
Results - percentage of samples containing antibiotic residues

* Using HPLC method (de Alwis and Heller, 2010) resulted in 85.7% of samples containing virginiamycin residues.
* No samples had virginiamycin residue concentrations > 1 ppm (GRAS limit)
Results - virginiamycin residue concentrations
FDA approved feeding levels of virginiamycin for various species vs. levels detected in distillers grains samples

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Species</th>
<th>Min (ppm)</th>
<th>Max (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virginiamycin</td>
<td>Chicken</td>
<td>5.5</td>
<td>22.0</td>
</tr>
<tr>
<td>Virginiamycin*</td>
<td>Swine</td>
<td>5.5</td>
<td>11.0</td>
</tr>
<tr>
<td>Virginiamycin</td>
<td>Turkey</td>
<td>11.0</td>
<td>22.0</td>
</tr>
<tr>
<td>Virginiamycin</td>
<td>Distillers grains samples</td>
<td>0</td>
<td>0.60</td>
</tr>
</tbody>
</table>

*Values presented as ppm for minimum and maximum allowed for swine derived from FDA clearance stated as g/ton for finishing swine consuming an average of 5.4 lbs feed/day.
Results - tetracycline residue concentrations
FDA approved feeding levels of tetracycline for various food animal species

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Species</th>
<th>Min (ppm)</th>
<th>Max (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetracycline</td>
<td>Cattle</td>
<td>7.5</td>
<td>7.5</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>Chicken</td>
<td>11.0</td>
<td>55.1</td>
</tr>
<tr>
<td>Tetracycline*</td>
<td>Swine</td>
<td>11.0</td>
<td>55.1</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>Turkey</td>
<td>11.0</td>
<td>55.1</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>Distillers Grain Samples</td>
<td>0</td>
<td>0.007</td>
</tr>
</tbody>
</table>

*Values presented as ppm for minimum and maximum allowed for swine derived from FDA clearance stated as g/ton for finishing swine consuming an average of 5.4 lbs feed/day.
Results - tylosin residue concentrations
FDA approved feeding levels of tylosin for various species vs. levels detected in distillers grains samples

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Species</th>
<th>Min (ppm)</th>
<th>Max (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tylosin</td>
<td>Cattle</td>
<td>8.8</td>
<td>11.0</td>
</tr>
<tr>
<td>Tylosin</td>
<td>Chicken</td>
<td>4.4</td>
<td>55.1</td>
</tr>
<tr>
<td>Tylosin</td>
<td>Layer Hen</td>
<td>22.0</td>
<td>55.1</td>
</tr>
<tr>
<td>Tylosin*</td>
<td>Swine</td>
<td>11.0</td>
<td>22.0</td>
</tr>
<tr>
<td>Tylosin</td>
<td>Distillers grains samples</td>
<td>0</td>
<td>0.02</td>
</tr>
</tbody>
</table>

*Values presented as ppm for minimum and maximum allowed for swine derived from FDA clearance stated as g/ton for finishing swine consuming an average of 5.4 lbs feed/day.
Results - erythromycin residue concentrations
FDA approved feeding levels of erythromycin for various species vs. levels detected in distillers grains samples

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Species</th>
<th>Min (ppm)</th>
<th>Max (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythromycin</td>
<td>Cattle</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>Chicken</td>
<td>5.1</td>
<td>20.4</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>Layer</td>
<td>20.4</td>
<td>20.4</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>Turkey</td>
<td>5.1</td>
<td>20.4</td>
</tr>
<tr>
<td>Erythromycin*</td>
<td>Swine</td>
<td>10.2</td>
<td>10.2</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>Distillers grains samples</td>
<td>0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

*Values presented as ppm for minimum and maximum allowed for swine derived from FDA clearance stated as g/ton for finishing swine consuming an average of 5.4 lbs feed/day.
Results - penicillin residue concentrations
FDA approved feeding levels of penicillin for various species vs. levels detected in distillers grains samples

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Species</th>
<th>Min (ppm)</th>
<th>Max (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillin G Procaine</td>
<td>Chicken</td>
<td>2.8</td>
<td>55.1</td>
</tr>
<tr>
<td>Penicillin G Procaine*</td>
<td>Swine</td>
<td>11.0</td>
<td>55.1</td>
</tr>
<tr>
<td>Penicillin G Procaine</td>
<td>Turkey</td>
<td>2.8</td>
<td>55.1</td>
</tr>
<tr>
<td>Penicillin G</td>
<td>Distillers grains samples</td>
<td>0.003</td>
<td>0.19</td>
</tr>
</tbody>
</table>

*Values presented as ppm for minimum and maximum allowed for swine derived from FDA clearance stated as g/ton for finishing swine consuming an average of 5.4 lbs feed/day.
Results - Do residues cause bacterial inhibition?

- To date, 116 sample extracts tested against sentinel bacteria
 - 1 sample showed inhibition of *E. coli* ATCC 8739
 - Bacterial threshold = 10^4
 - 0 samples showed inhibition of *L. monocytogenes* ATCC 19115
Penicillin G inactivation

- Poor stability below pH 5, most stable at pH 6.0 to 6.4
- Sharply inactivated at all pH levels (4.8, 4.5, 4.2, 4.0, 3.8) and faster at 35°C than at 25°C
 - Islam et al. (1998)
- Half life of 14 days when in solution at 24°C
- Easily inactivated by primary alcohols and some sugars
- At pH of 4.5 or 9.0, rate of inactivation increases 10-fold
- At pH 3.2 or 10.5, rate of inactivation increases 100-fold
- Completely degraded at pH 3 and a temperature of 37°C for 30 min.
Virginiamycin inactivation in ethanol production

- Does not remain in ethanol after distillation
- Is destroyed at temperatures > 93°C
- Distillers grains dryer temperatures range from 93 to 232°C
- Inactivated during ethanol distillation
 - Hynes et al. (1997)
Erythromycin inactivation

- Insoluble in water, soluble in alcohol (Brisaert et al. 1996)
 - Stability decreases when alcohol content increases

- Thermally unstable especially in solutions containing water (Brisaert et al., 1996)
 - Degrades faster at higher temperatures

- Stability pH dependent (Brisaert et al., 1996)
 - Optimal pH values between 7-8
 - Stability decreases when pH decreases
Tylosin inactivation

- Most stable at pH 3.5 and 9.0 (Ter-Sarkisian et al., 1984)
 - Significant inactivation of antibiotic outside of these stability ranges
 - Inactivation increases with increased temperature level and exposure period
Summary of preliminary results for antimicrobial residues in DDGS

- % of samples with detectable residues
 - Virginiamycin - < 2%
 - < 1 ppm (GRAS limit)
 - Tetracycline - 24%
 - Tylosin – 30%
 - Erythromycin – 37%
 - Penicillin – 100%

- No residues > 1 ppm, most were < 0.2 ppm
- Only 1 sample showed inhibition to *E. coli* ATTC 8739
- No samples showed inhibition to *L. monocytogenes* ATTC 19115
Conclusions

• Sources of tylosin and tetracycline residues are unknown

• Residue concentrations in distillers grains are extremely low
 ▫ Much less than minimum approved FDA feed levels for food animals

• There is minimal concern of residues having inhibitory properties when using *E. coli* ATCC 8739 and *L. monocytogenes* ATCC 19115 as sentinel bacteria

• It is likely that the majority of antibiotic residues in distillers grains are inactivated during the distillers grains production process
Acknowledgements

- Funding provided by:
 - MN Corn Research and Promotion Council