Distiller’s Dried Grains with Solubles – Redefined for Swine

Dr. Jerry Shurson
Department of Animal Science
University of Minnesota
What is DDGS?

- Co-product of the dry-milling ethanol industry
 - Corn (maize) DDGS - Midwestern US
 - Wheat DDGS - Canada
 - Sorghum (milo) DDGS - Great Plains US
 - Barley DDGS
 - Rye DDGS
Production of DDGS

- Yeasts and enzymes are used to ferment the starch fraction of corn
- Ethanol and carbon dioxide are produced
- Distiller’s grains and distiller’s solubles are the residues remaining after fermentation
- These fractions are blended and dried to produce distiller’s dried grains with solubles (DDGS)
Dry-Milling
Average Ethanol Yield Per Bushel (25.4 kg) of Corn

- Ethanol: 2.7 gallons (10.2 liters)
- DDGS: 18 lbs (8.2 kg)
- CO₂: 18 lbs (8.2 kg)

Slide courtesy of Ms. Kelly Davis, CVEC, Benson, MN
“New Generation” vs. “Old Generation” DDGS

Lower Quality,
Less Digestible
DDGS

High Quality,
Highly Digestible
DDGS
Comparison of Energy Values for DDGS (88% Dry Matter Basis)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DE, kcal/lb</td>
<td>1582</td>
<td>1600</td>
<td>1546</td>
<td>1564</td>
</tr>
<tr>
<td></td>
<td>Range 1550-1604</td>
<td>Range 1349-1853</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME, kcal/lb</td>
<td>1434</td>
<td>1527</td>
<td>1405</td>
<td>1212</td>
</tr>
<tr>
<td></td>
<td>Range 1400-1458</td>
<td>Range 1279-1776</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Corn (NRC, 1998): DE (kcal/lb) = 1580
ME (kcal/lb) = 1534
Comparison of Amino Acid Composition of DDGS (88% dry matter basis)

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>“New” DDGS</th>
<th>“Old” DDGS</th>
<th>DDGS (NRC, 1998)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lysine, %</td>
<td>0.75 (17.3)</td>
<td>0.47 (26.5)</td>
<td>0.59</td>
</tr>
<tr>
<td>Methionine, %</td>
<td>0.63 (13.6)</td>
<td>0.44 (4.5)</td>
<td>0.48</td>
</tr>
<tr>
<td>Threonine, %</td>
<td>0.99 (6.4)</td>
<td>0.86 (7.3)</td>
<td>0.89</td>
</tr>
<tr>
<td>Tryptophan, %</td>
<td>0.22 (6.7)</td>
<td>0.17 (19.8)</td>
<td>0.24</td>
</tr>
<tr>
<td>Valine, %</td>
<td>1.32 (7.2)</td>
<td>1.22 (2.3)</td>
<td>1.23</td>
</tr>
<tr>
<td>Arginine, %</td>
<td>1.06 (9.1)</td>
<td>0.81 (18.7)</td>
<td>1.07</td>
</tr>
<tr>
<td>Histidine, %</td>
<td>0.67 (7.8)</td>
<td>0.54 (15.2)</td>
<td>0.65</td>
</tr>
<tr>
<td>Leucine, %</td>
<td>3.12 (6.4)</td>
<td>2.61 (12.4)</td>
<td>2.43</td>
</tr>
<tr>
<td>Isoleucine, %</td>
<td>0.99 (8.7)</td>
<td>0.88 (9.1)</td>
<td>0.98</td>
</tr>
<tr>
<td>Phenylalanine, %</td>
<td>1.29 (6.6)</td>
<td>1.12 (8.1)</td>
<td>1.27</td>
</tr>
</tbody>
</table>

Values in () are CV’s among plants
Comparison of Apparent Ileal Digestible Amino Acid Composition of DDGS (88% dry matter basis)

<table>
<thead>
<tr>
<th></th>
<th>"New" DDGS</th>
<th>"Old" DDGS</th>
<th>DDGS (NRC, 1998)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lysine, %</td>
<td>0.39</td>
<td>0.00</td>
<td>0.27</td>
</tr>
<tr>
<td>Methionine, %</td>
<td>0.28</td>
<td>0.21</td>
<td>0.34</td>
</tr>
<tr>
<td>Threonine, %</td>
<td>0.55</td>
<td>0.32</td>
<td>0.49</td>
</tr>
<tr>
<td>Tryptophan, %</td>
<td>0.13</td>
<td>0.13</td>
<td>0.12</td>
</tr>
<tr>
<td>Valine, %</td>
<td>0.81</td>
<td>0.45</td>
<td>0.77</td>
</tr>
<tr>
<td>Arginine, %</td>
<td>0.79</td>
<td>0.53</td>
<td>0.77</td>
</tr>
<tr>
<td>Histidine, %</td>
<td>0.45</td>
<td>0.26</td>
<td>0.40</td>
</tr>
<tr>
<td>Leucine, %</td>
<td>2.26</td>
<td>1.62</td>
<td>1.85</td>
</tr>
<tr>
<td>Isoleucine, %</td>
<td>0.63</td>
<td>0.37</td>
<td>0.64</td>
</tr>
<tr>
<td>Phenylalanine, %</td>
<td>0.78</td>
<td>0.60</td>
<td>0.96</td>
</tr>
</tbody>
</table>
Comparison of Phosphorus Level and Relative Availability of DDGS (88% dry matter basis)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total P, %</td>
<td>0.78</td>
<td>0.79</td>
<td>0.73</td>
<td>0.25</td>
</tr>
<tr>
<td>Range</td>
<td>0.62-0.87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P Availability, %</td>
<td>90</td>
<td>No data</td>
<td>77</td>
<td>14</td>
</tr>
<tr>
<td>Range</td>
<td>88-92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available P, %</td>
<td>0.70</td>
<td>No data</td>
<td>0.56</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Why is there so much interest in feeding DDGS to swine?

- “New Generation” DDGS is high in digestible nutrients
- Economical partial replacement for:
 - corn
 - soybean meal
 - dicalcium phosphate
- Increasing production and supply
- Unique properties
 - reduce P excretion in manure
 - increase litter size weaned/sow
 - gut health benefits?
Maximum Inclusion Rates of “New Generation” DDGS in Swine Diets
(Based Upon University of Minnesota Performance Trials)

- Nursery pigs (> 7 kg)
 - Up to 25%

- Grow-finish pigs
 - Up to 20% (higher levels may reduce pork fat quality)

- Gestating sows
 - Up to 50%

- Lactating sows
 - Up to 20%

Assumptions: no mycotoxins formulate on a digestible amino acid and available phosphorus basis
Feeding “New Generation DDGS to Sows”
Effect of Feeding a 50% DDGS Diet on Sow Weight Gain During Gestation (Reproductive Cycle 1)

(P > .22)
MSE 10.12
Effect of Feeding 0 or 50% DDGS Gestation Diets and 0 or 20% DDGS Lactation Diets on Pigs Weaned/Litter

Dietary treatment

a, b, x, y Different superscripts indicate significant difference (P < .10).
Effect of Dietary Treatment Combination on Sow Lactation ADFI

![Graph showing feed intake for different dietary treatments.]

- **Dietary Treatment**
 - Control/Control
 - Control/DDGS
 - DDGS/Control
 - DDGS/DDGS

- **Feed Intake, lb/day**
 - Cycle 1
 - Cycle 2

- **Note:** Different superscripts indicate significant difference (P < .10).
Feeding “New Generation” DDGS to Weaned Pigs
Materials and Methods – Nursery Experiments

- Experiment 1
 - Pigs weaned at 19.0 ± 0.3 d of age
 - Weighed 7.10 ± 0.07 kg
- Experiment 2
 - Pigs weaned at 16.9 ± 0.4 d of age
 - Weighed 5.26 ± 0.07 kg
- Pigs were fed a commercial pelleted diet (d 0 to 3 postweaning)
- Phase II (d 4-17) and Phase III (d 18 – 35) diets were formulated on a digestible amino acid basis.
 - Diets contained 0, 5, 10, 15, 20, or 25% DDGS
Effect of DDGS Level on Growth Rate (Experiment 1)

Means not sharing a common superscript letter are significantly different ($P < .05$)
Effect of DDGS Level on ADFI (Experiment 1)

Experimental period

ADFI (g/d)

- Phase 2
 - 0% DDGS
 - 5% DDGS
 - 10% DDGS
 - 15% DDGS
 - 20% DDGS
 - 25% DDGS

- Phase 3
 - 0% DDGS
 - 5% DDGS
 - 10% DDGS
 - 15% DDGS
 - 20% DDGS
 - 25% DDGS

SE = 46.9

SE = 82.6

Phase (P < .01)
Effect of DDGS Level on Gain/Feed (Experiment 1)

Experimental period

- Phase 2
- Phase 3

SE = 0.11
SE = 0.06

- 0% DDGS
- 5% DDGS
- 10% DDGS
- 15% DDGS
- 20% DDGS
- 25% DDGS

G/F
Effect of DDGS Level on Growth Rate (Experiment 2)

Linear effect of diet
\((P = .09) \)

Phase 2
- 0% DDGS
- 5% DDGS
- 10% DDGS
- 15% DDGS
- 20% DDGS
- 25% DDGS

Phase 3

SE = 55.1
SE = 51.1

Phase (\(P < .01 \))
Effect of DDGS Level on Feed Intake (Experiment 2)

Means not sharing a common superscript letter are significantly different (P < .05)

Linear effect of diet (P = .05)

Phase x Diet (P = .02)
Effect of DDGS Level on Gain/Feed (Experiment 2)

Experimental period

G/F

Phase 2

Phase 3

SE = 0.13

SE = 0.03

0% DDGS
5% DDGS
10% DDGS
15% DDGS
20% DDGS
25% DDGS

Phase

(P = .06)
Effect of DDGS Level on Final BW (Experiment 2)

Dietary treatment

- 0% DDGS
- 5% DDGS
- 10% DDGS
- 15% DDGS
- 20% DDGS
- 25% DDGS

Body weight, kg

<table>
<thead>
<tr>
<th>Diet Level</th>
<th>Body Weight, kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>0% DDGS</td>
<td>19.0</td>
</tr>
<tr>
<td>5% DDGS</td>
<td>19.5</td>
</tr>
<tr>
<td>10% DDGS</td>
<td>20.0</td>
</tr>
<tr>
<td>15% DDGS</td>
<td>20.5</td>
</tr>
<tr>
<td>20% DDGS</td>
<td>21.0</td>
</tr>
<tr>
<td>25% DDGS</td>
<td>21.5</td>
</tr>
</tbody>
</table>

SE = 1.3
Feeding “New Generation” DDGS to Grow-Finish Pigs
Fat Quality Characteristics of Market Pigs Fed Corn-Soy Diets Containing 0 to 30% DDGS

<table>
<thead>
<tr>
<th></th>
<th>0 %</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belly thickness, cm</td>
<td>3.15<sup>a</sup></td>
<td>3.00<sup>a,b</sup></td>
<td>2.84<sup>a,b</sup></td>
<td>2.71<sup>b</sup></td>
</tr>
<tr>
<td>Belly firmness score, degrees</td>
<td>27.3<sup>a</sup></td>
<td>24.4<sup>a,b</sup></td>
<td>25.1<sup>a,b</sup></td>
<td>21.3<sup>b</sup></td>
</tr>
<tr>
<td>Adjusted belly firmness score, degrees</td>
<td>25.9<sup>a</sup></td>
<td>23.8<sup>a,b</sup></td>
<td>25.4<sup>a,b</sup></td>
<td>22.4<sup>b</sup></td>
</tr>
<tr>
<td>Iodine number</td>
<td>66.8<sup>a</sup></td>
<td>68.6<sup>b</sup></td>
<td>70.6<sup>c</sup></td>
<td>72.0<sup>c</sup></td>
</tr>
</tbody>
</table>

Means within a row lacking common superscripts differ (P < .05).
Formulation Methods for Diets Containing DDGS

- **Total vs digestible amino acid basis**
 - Maximum DDGS inclusion rate = 10%
 - if formulating on a total amino acid basis
 - Much higher DDGS inclusion rates (>10%)
 - if diets are formulated using digestible amino acids

- **Total vs available phosphorus basis**
 - Formulating diet on an available P basis increases economic benefit and reduces P content of manure
Cost Savings Depends on Diet Formulation Method Used
Comparison of Formulating DDGS Diets on a Total Lysine and P Basis vs. Digestible Lysine and Available P Basis

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Typical Corn-SBM-Lysine Diet</th>
<th>10% DDGS Total Lysine</th>
<th>10% DDGS Digestible Lysine Available P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn, kg</td>
<td>731.5</td>
<td>650.5</td>
<td>643</td>
</tr>
<tr>
<td>Soybean meal 44%, kg</td>
<td>241</td>
<td>223</td>
<td>231.5</td>
</tr>
<tr>
<td>DDGS, kg</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Dicalcium phosphate, kg</td>
<td>12</td>
<td>9.5</td>
<td>8.5</td>
</tr>
<tr>
<td>Limestone, kg</td>
<td>7</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>Salt, kg</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>L-lysine HCl, kg</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>VTM premix, kg</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL, kg</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Total Cost, $</td>
<td>109.80</td>
<td>108.40</td>
<td>109.18</td>
</tr>
<tr>
<td>Difference, $</td>
<td>-</td>
<td>-1.40</td>
<td>-0.62</td>
</tr>
</tbody>
</table>

Corn = $2.00/bu, DDGS = $85/ton, soybean meal 44% = $190/ton, dicalcium phosphate = $15.00/cwt, limestone = $1.75/cwt, salt = $6.90/cwt, L-lysine HCl = $1.00/lb, VTM premix = $1.17/lb
Formulating on a total lysine and P basis replaces:

- 7.5 kg less corn ($0.079/kg)
- 8.5 kg more soybean meal 44% ($0.209/kg)
- 1 kg less dicalcium phosphate ($0.33/kg)

compared to formulating on a digestible amino acid and available phosphorus basis
Quick Calculation of Feed Cost Savings

Thumb rule:

Additions/2000 lbs diet

+ 200 lbs DDGS \(\times \) _____ $/lb = $_______
+ 3 lbs limestone \(\times \) _____ $/lb = $_______
TOTAL ADDITIONS (A) $_______

Subtractions/2000 lbs diet

- 177 lbs corn \(\times \) _____ $/lb = $_______
- 20 lbs SBM (44\%) \(\times \) _____ $/lb = $_______
- 6 lbs dical. phos. \(\times \) _____ $/lb = $_______
TOTAL SUBTRACTIONS (S) $_______

(S – A) = Feed cost savings/ton by adding 10% DDGS to the diet
Adding 20% DDGS to a corn-soy diet and formulating on an available P basis
- can reduce manure P by > 12%

Adding phytase to a corn-soy diet
- increases P bioavailability from 15% to > 45%

Lowering dietary P, adding 20% DDGS & phytase
- can reduce manure P excretion by 40 to 50%
Diet Compositions and Cost Comparison from Adding 18.8% DDGS and Phytase

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Corn-SBM-1.5 kg Lysine</th>
<th>18.8% DDGS + Phytase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn, kg</td>
<td>798.3</td>
<td>636.3</td>
</tr>
<tr>
<td>Soybean meal 44%, kg</td>
<td>176.9</td>
<td>159.4</td>
</tr>
<tr>
<td>DDGS, kg</td>
<td>0.0</td>
<td>188</td>
</tr>
<tr>
<td>Dicalcium phosphate, kg</td>
<td>11.6</td>
<td>0.0</td>
</tr>
<tr>
<td>Limestone, kg</td>
<td>7.2</td>
<td>9.8</td>
</tr>
<tr>
<td>Salt, kg</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>L-lysine HCl, kg</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>VTM premix, kg</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Phytase, 500 FTU/kg</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td>TOTAL, kg</td>
<td>1000.0</td>
<td>1000.0</td>
</tr>
<tr>
<td>Total Cost, $</td>
<td>96.25</td>
<td>96.36</td>
</tr>
<tr>
<td>Difference, $</td>
<td>-</td>
<td>+ 0.11</td>
</tr>
</tbody>
</table>
Does Feeding DDGS Improve Gut Health?
DDGS and Gut Health

- Field reports:
 - Beneficial effect of adding 5 to 10% DDGS in grow-finish diets

- DDGS contains low levels of soluble (0.7 %) and high levels of insoluble (42.2 %) fiber (Shurson et al., 2000)
 - Low soluble fiber diets may reduce the proliferation of pathogenic organisms in the GI tract (Hampson, 1999).

- DDGS contains components of yeast cells
 - May have nutraceutical properties
What is Ileitis?

- Porcine Proliferative Enteropathy
- Caused by *Lawsonia intracellularis*
 - Present in 96% of U.S. swine herds (Bane et al., 1997)
 - 28% of pigs affected (NAHMS, 2000)
 - Can be shed in infected pigs for up to 10 weeks
- Animals are infected by oral contact with feces from animals shedding the bacteria
- 7-10 days after infection:
 - Lesions of the intestinal wall begin to form
 - Lesions maximized around 21 days post-infection
Porcine Intestinal Adenomatosis (PIA)
- Chronic form
- Seen in growing pigs (6 - 20 weeks of age)
- Decreased feed intake, lethargic

Porcine Hemorrhagic Enteropathy (PHE)
- Acute form, affects heavier pigs
 - Greatest frequency appears to be from 65 – 110 kg pigs
- Massive intestinal hemorrhaging, bloody diarrhea, increase in mortality
Effect of Dietary DDGS Level on Lesion Length (21 d Post-Challenge) Experiment 1

<table>
<thead>
<tr>
<th>Section of gastro-intestinal tract</th>
<th>NC</th>
<th>PC</th>
<th>D10</th>
<th>D20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jejunum*</td>
<td>a</td>
<td>b</td>
<td>a,b</td>
<td></td>
</tr>
<tr>
<td>Ileum*</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>Cecum</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>Colon</td>
<td></td>
<td></td>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>

SE = 8.5 1.4 0.3 1.4

a,b Means not sharing a common superscript letter are different \((P < .05)\).

* Effect of disease challenge \((P < .05)\).
Effect of Dietary DDGS Level on Lesion Severity (21 d Post-Challenge) Experiment 1

a, b Means not sharing a common superscript letter are different (P < .05).
* Effect of disease challenge (P < .01).
Effect of Dietary DDGS Level on Lesion Prevalence (21 d Post-Challenge) Experiment 1

% of pigs

Section of gastro-intestinal tract

Jejunum* Ileum* Cecum Colon*

NC PC D10 D20

SE = 6.3 6.4 3.6 5.0

a, b Means not sharing a common superscript letter are different (P < .05).

* Effect of disease challenge (P < .01).
Effect of Dietary DDGS Level on Fecal Shedding (PCR Analysis)

Experiment 1

SE = 0.0

\[
\begin{array}{c}
\text{% of pigs} \\
\text{d 0} & \text{d 14*} & \text{d 21*} \\
\text{NC} & \text{PC} & \text{D10} & \text{D20} \\
\end{array}
\]

\(a, b\) Means not sharing a common superscript letter are different \((P < .05)\).

* Effect of disease challenge \((P < .01)\).
Effect of DDGS Level on *L. intracellularis* Infection (IHC Analysis) Experiment 1

- **IHC Score**
 - SE = 0.12
 - Means not sharing a common superscript letter are different (*P* < .05).

- **IHC Prevalence**
 - SE = 2.8
 - Effect of disease challenge (*P* < .01).

a,b Means not sharing a common superscript letter are different (*P* < .05).

*Effect of disease challenge (*P* < .01).*
Summary of Results – Experiment 1

- DDGS inclusion did not improve the pig’s ability to resist an ileitis challenge
- Dosage (inoculation) rate was higher than desired
 - Actual: 1.56×10^9 dose of *L. intracellularis*
 - Goal: 1×10^8 dose of *L. intracellularis*
Effect of Dietary Treatment on Lesion Length (21 d Post-Challenge) Experiment 2

* Effect of disease challenge ($P < .01$).
Effect of Dietary Treatment on Lesion Severity (21 d Post-Challenge) Experiment 2

* Effect of disease challenge ($P < .01$).
Effect of Dietary Treatment on Lesion Prevalence (21 d Post-Challenge) Experiment 2

* Effect of disease challenge \((P < .01)\).
Effect of Dietary Treatment on Fecal Shedding (PCR Analysis) Experiment 2

* Effect of disease challenge ($P < .01$).
Effect of Treatment on *L. intracellularis* Infection (IHC Analysis) Experiment 2

IHC Score

- D10 ($P = .05$)
- AR ($P = .10$)

SE = 0.12

IHC Prevalence

- SE = 2.8

* Effect of disease challenge ($P < .01$).
Summary of Results, Experiment 2

- Inoculation level was closer to goal
- DDGS inclusion (10%) or antimicrobial regimen had a positive effect on the pig’s ability to resist an ileitis challenge
- No beneficial additive effects of combining DDGS and BMD®/Aureomycin® regimen
We have developed a DDGS web site featuring:

* research summaries
 - swine, poultry, dairy, & beef
 - DDGS quality
* presentations given
* links to other DDGS related web sites
* international audiences