Distillers Dried Grains with Solubles for Swine Diets

Mark H. Whitney, M.S.
Research Fellow
University of Minnesota

Production of DDGS

- Co-product from the dry-milling of corn for production of ethanol
- 1 bu of corn yields:
 - 2.7 gallons of ethanol
 - 18 lbs of DDGS
 - 18 lbs of CO₂
- Other grains can be used
 - Sorghum
- Level of production has increased recently:
 - Increased number and capacity of ethanol plants
 - ↑ supply and ↓ cost of DDGS in Midwest

Historical Use of DDGS

- Used in ruminant diets primarily
- Not used in swine or poultry diets:
 - Lack of nutritional information
 - Variability of nutrient content
 - Viewed as having low energy density
 - Poor amino acid profile
 - Digestibility of amino acids
 - Cost and supply

DDGS Swine Research Conducted at Univ. of MN

- 12 experiments conducted so far:
 - DDGS Database
 - Determine DE and ME Values for DDGS (2)
 - Nutrient Balance and Gas/Odor Emission
 - Apparent Ileal Amino Acid Digestibility
 - P Availability Study
 - Grow-Finish Performance/Carcass Quality
 - Sow Reproductive Performance
 - Nursery Performance
 - Gut Health / Ileitis (3)
DDGS Nutrient Database

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>MN-SD*</th>
<th>OMP</th>
<th>NRC(1998)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>88.9</td>
<td>88.3</td>
<td>93.0</td>
</tr>
<tr>
<td>Crude fat</td>
<td>10.9</td>
<td>8.2</td>
<td>9.0</td>
</tr>
<tr>
<td>Crude fiber</td>
<td>8.8</td>
<td>7.1</td>
<td>4.6</td>
</tr>
<tr>
<td>ME*</td>
<td>3895</td>
<td>3874</td>
<td>3449</td>
</tr>
<tr>
<td>Crude protein</td>
<td>30.2</td>
<td>28.1</td>
<td>29.8</td>
</tr>
<tr>
<td>Try</td>
<td>0.64</td>
<td>0.53</td>
<td>0.67</td>
</tr>
<tr>
<td>Met</td>
<td>0.55</td>
<td>0.50</td>
<td>0.54</td>
</tr>
<tr>
<td>Thr</td>
<td>1.13</td>
<td>0.98</td>
<td>1.01</td>
</tr>
<tr>
<td>Trp</td>
<td>0.22</td>
<td>0.19</td>
<td>0.27</td>
</tr>
</tbody>
</table>

* Number of samples = 120 (10 plants, 12 samples each), DM basis

Energy Balance Studies

- ME and DE values obtained were significantly higher than NRC 1998 but were highly variable
 - 3380 to 5905 kcal DE/kg (3983 kcal DE/kg)
 - 3315 to 5930 kcal ME/kg (3917 kcal ME/kg)

- Calculated DE and ME values:
 - DE kcal/kg = 3965 (CV=2.2%) Range: 3883 to 4020 kcal/kg
 - ME kcal/kg = 3592 (CV=4.4%) Range: 3510 to 3654 kcal/kg

DDGS Apparent Ileal Amino Acid Digestibility Comparison

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lys</td>
<td>0.83 (53) 0.44</td>
<td>0.68 (0) 0.00</td>
<td>0.67 (46) 0.31</td>
</tr>
<tr>
<td>Met</td>
<td>0.55 (58) 0.32</td>
<td>0.49 (49) 0.24</td>
<td>0.54 (72) 0.39</td>
</tr>
<tr>
<td>Thr</td>
<td>1.13 (55) 0.62</td>
<td>1.01 (36) 0.36</td>
<td>1.11 (50) 0.56</td>
</tr>
<tr>
<td>Trp</td>
<td>0.24 (63) 0.15</td>
<td>0.27 (56) 0.15</td>
<td>0.20 (70) 0.14</td>
</tr>
</tbody>
</table>

DDGS P Availability Study

- Phosphorus analysis of P excretion & retention
 - Relative to P intake for DDGS and Dical Phosphate
 - Excretion 27.5% availability of P (r^2 = .47)
 - Retention 92.2% availability of P (r^2 = .72)
 - DDGS 0.89% total P x 90% avail = 0.80% avail P
 - Corn 0.28% total P x 14% avail = 0.04% avail P
 - SBM (44% CP) 0.65% total P x 31% avail = 0.20% avail P

DDGS Nursery Performance Studies

- 2 experiments
 - 19 and 17 days of age (15.6 vs 11.6 lbs)
 - Commercial pelleted diet first 4 days
 - 0, 5, 10, 15, 20, or 25% DDGS
 - Formulated on App II Dig AA basis
 - Phase 2 (2 weeks), Phase 3 (3 weeks)

- Similar growth, feed intake, and G/F
 - Slight lag during Phase 2 for younger pigs, but they caught up by end of nursery period
DDGS Nursery Performance Studies

- **Performance**
 - Growth rate similar at 0 and 10% DDGS levels
 - Drop at 20 & 30% levels
 - No difference in feed intakes
 - Decrease in G/F at 30% DDGS inclusion level

DDGS Grow-Finish Performance and Carcass Composition Study

- **Performance**
 - Growth rate similar at 0 and 10% DDGS levels
 - Drop at 20 & 30% levels
 - No difference in feed intakes
 - Decrease in G/F at 30% DDGS inclusion level

- **Carcass composition**
 - % lean and backfat depth unaffected

- **Importance of using available vs. total amino acid levels when formulating and using DDGS**

DDGS Sow Gestation/Lactation Study

- **Study just completed**
- **2 x 2 factorial arrangement of treatments:**
 - Gestation: 0 or 50% DDGS
 - Lactation: 0 or 20% DDGS
- **Followed through 2 parities (mixed parity sows)**
 - 93 sows initially, 49 sows second cycle
- **Initial results suggest an increase of ≅ 0.75 pig weaned for the 2nd litter with DDGS feeding**
 - Insoluble fiber effect?
Ileitis

DDGS Ileitis Challenge Studies

Field reports:
- Beneficial effect of adding 5 to 10% DDGS in grow-finish diets
- DDGS contains low levels of soluble (0.7%) and high levels of insoluble (42.2%) fiber (Shurson et al., 2000)
- Low soluble fiber diets may reduce the proliferation of pathogenic organisms in the GI tract (Hampson, 1999).
- DDGS contains yeast cells
 - May have nutraceutical properties

Experiment 1:
- NC: Negative control, corn-soybean meal diet
- PC: Positive control, corn-soybean meal diet
- D10: 10% DDGS diet
- D20: 20% DDGS diet

Experiment 2:
- NC, PC, and D10 same as Experiment 1
- PC+AR: Corn-soybean meal diet with antimicrobial regimen
- D10+AR: 10% DDGS diet with antimicrobial regimen

Experiment 3:
- NC, PC, and D10 same as Experiment 1
- SH: 5% Soy Hulls diet
- PA: Polyclonal antibody product with soy hulls

Just completed 3rd challenge study:
- Variable results with DDGS in diet
 - 1 study – positive effect on lesion prevalence, length, and severity in ileum and colon
 - 10% inclusion rate
 - Similar to effect of an antimicrobial/antibiotic treatment (BMD/CTC)
 - 2 studies – no beneficial effect of DDGS inclusion
- Dosage rate very high in one study
 - Probably higher in all studies than would occur in field
- Other potential nutritional strategies:
 - Soybean hulls, polyclonal antibody product

Quality Criteria

- Establish relationship with supplier
 - Quality control measures in place
 - Nutrient specs, mycotoxins, handling characteristics
 - Consistency of product
 - Proportion of solubles standardized
 - Grading system in place?
 - Color: generally, lighter is better
 - Indicates higher amino acid digestibility
 - Smell: shouldn’t have burnt smell
 - May affect palatability
 - Can indicate protein damage
Quality Criteria

Univ. of MN DDGS Web Site

We have developed a DDGS web site featuring:
- research summaries
 - swine, poultry, dairy, & beef
 - DDGS quality
- presentations given
- links to other DDGS related web sites
- international audiences

www.ddgs.umn.edu