The Value of Midwestern Produced DDGS in Swine Diets

Dept. of Animal Science
University of Minnesota
and
B. Shanks and D. Wulf
Dept. of Animal and Range Science
South Dakota State University
3.2 to 3.5 million metric tonnes of DDGS are produced in North America/year
- ~ 900,000 MT produced in MN-Dakota region
- ~ 700,000 MT exported to the EU
- ~ 2.65 million MT fed in U.S. and Canada
 - ~ 2,580,000 MT (80%) fed to ruminants
 - ~ 45,000 MT fed in MN turkey industry
 - ~ 30,000 MT used in swine diets
The Minnesota Ethanol Industry

- 14 plants:
 - Use 130 million bu. of corn
 - 13% of MN corn production
 - Produce 240 million gallons of ethanol
 - Produce 1 million tons of DDGS
 - 30% of total DDGS in North America

- Plants are:
 - Small - 13 to 34 million gallon capacity/year
 - New - < 10 years old
 - Farmer owned - 8,945 farmer members
Why Hasn’t DDGS Been Used in Swine Diets?

- Low protein quality
- Low amino acid digestibility
- High fiber content
- Nutrient variability among sources
- Cost competitiveness with corn and soybean meal
- Image that DDGS is an inferior ingredient
Why is There Renewed Interest in Feeding DDGS to Swine?

Rapid growth of the ethanol industry has increased the quantity and local supply
- 24 million gallons of ethanol produced in 1994
- 220 million gallons produced in 2000

New ethanol plants are producing higher quality DDGS
- Higher nutrient content and digestibility than NRC (1998)

A cost effective partial replacement for corn, SBM and dicalcium phosphate
Why is There Renewed Interest in Feeding DDGS to Swine?

- Use reduces phosphorus content of manure
- Appears to improve gut health of grow-finish pigs
Quality Considerations for Selecting DDGS Sources

- Golden color DDGS is much better suited for swine diets than darker colored DDGS due to higher amino acid digestibility.

- DDGS produced by new Midwestern plants is higher in nutrient content and digestibility than DDGS from older plants.
Quality Considerations for Selecting DDGS Sources

- Nutrient Specifications
 - Moisture – maximum 12%
 - Protein – minimum 26.5%
 - Fat – minimum 10%
 - Fiber – maximum 7.5%
Quality Considerations for Selecting DDGS Sources

- Physical characteristics
 - Bulk density – 34 to 37 lb/cubic foot
 - Particle size:
 - maximum coarse particles - 10% on 2000 screen
 - maximum fine particles - 15% on 600 screen & in pan
 - Smell – fresh, fermented
 - Color – goldenrod
How Do Nutrient Levels of MNSD DDGS Compare to Published Values?
MNSD DDGS Has Higher Nutrient Levels and Digestibility than Other DDGS Sources

- **Energy**
 - Digestible energy (DE) and metabolizable energy (ME) > corn
 - Increase in fiber content is offset with increase in fat content

- **Amino acids**
 - Poor amino acid balance
 - Higher digestible amino acids levels
MNSD DDGS Metabolizable Energy (kcal/kg) vs. DDGS from an Older Midwestern Plant and Published Values

C.V. = 34.0
<table>
<thead>
<tr>
<th>App. Dig. AA</th>
<th>MNSD</th>
<th>MW</th>
<th>NRC (1998)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lysine, %</td>
<td>.44</td>
<td>.00</td>
<td>.31</td>
</tr>
<tr>
<td>Methionine, %</td>
<td>.32</td>
<td>.24</td>
<td>.39</td>
</tr>
<tr>
<td>Threonine, %</td>
<td>.62</td>
<td>.36</td>
<td>.56</td>
</tr>
<tr>
<td>Tryptophan, %</td>
<td>.15</td>
<td>.15</td>
<td>.14</td>
</tr>
<tr>
<td>Valine, %</td>
<td>.92</td>
<td>.51</td>
<td>.88</td>
</tr>
</tbody>
</table>
MNSD DDGS is Higher in Phosphorus Availability Compared to Corn and Published Values

- Available P in DDGS is dramatically improved compared to corn (0.80% vs 0.04%).

- Available P in MNSD DDGS is higher than published values (0.80% vs. 0.59%)
MNSD DDGS Available Phosphorus Levels vs. Published Values

% Available P

MNSD
NRC
DDGS is Often an Economical Addition to Swine Diets

- 200 lbs of DDGS and 3 lbs of limestone replaces:
 - 177 lbs of corn
 - 20 lbs of soybean meal (44%)
 - 6 lbs of dicalcium phosphate
Recommended Usage Rates of DDGS in Swine Diets

- Nursery pigs – up to 5%
- Grow-finish pigs – up to 20%
- Gestating sows – up to 50%
- Lactating sows – up to 20%
DDGS in Grow-Finish Diets

- Formulate on a digestible amino acid basis to optimize performance.
- No effect on carcass or meat quality when fed up to 30% of the diet.
- Reduces belly thickness, firmness, and increases fat softness.
- Appears to help alleviate gut health problems.
What Are the Effects of DDGS on Manure Nutrient Management and Air Quality?
Effects of DDGS on Manure Nitrogen Excretion

THE BAD NEWS

- Manure N content increases due to:
 - high crude protein:lysine ratio
 - reduced a.a. digestibility compared to corn & SBM
- Excess N minimized by adding synthetic amino acids to diets
- High levels of DDGS may reduce pig performance due to the energy cost of removing excess N
Effects of DDGS on Manure Phosphorus Excretion

- THE GOOD NEWS
 - Manure P content is reduced due to:
 - DDGS has more available P compared to corn and soybean meal
 - Amount of supplemental inorganic P or phytase in the diet is decreased.
 - Decreased diet cost
Effects of DDGS on Air Quality

- Feeding DDGS has no positive or negative effects on gas and odor emissions.
Effect of Dietary Treatment on Manure Odor Detection Threshold

MSE ± .1152 P > .10
Effect of Dietary Treatment on Ammonia Emission

![Graph showing the effect of dietary treatment on ammonia emission. The graph compares Control and DDGS groups over 9 weeks, with MSE ± .0876 and P > .10.](image-url)
Effect of Dietary Treatment on Hydrogen Sulfide Emission

![Graph showing the effect of dietary treatment on hydrogen sulfide emission. The x-axis represents weeks, and the y-axis represents H$_2$S (ppm). The graph compares Control (red line) and DDGS (blue line) treatments. The MSE is ±0.0426 and P > 0.10.](image-url)
Conclusion

- DDGS produced in MN and SD ethanol plants is:
 - higher quality than other sources
 - often a cost effective replacement for corn, soybean meal and dicalcium phosphate
 - abundant quantities are available locally
 - effective in minimizing P excretion in manure
 - may improve gut health of grow-finish pigs
Acknowledgements

Funding for these studies was provided by the MN Corn Growers Association and the following ethanol plants:

- Aberdeen, SD
- Bingham Lake, MN
- Luverne, MN
- Preston, MN
- Winnebago, MN
- Benson, MN
- Claremont, MN
- Morris, MN
- Scotland, SD
- Winthrop, MN