The Value of DDGS in Swine Feeding Programs

Dr. Jerry Shurson
Department of Animal Science
University of Minnesota
DDGS Production and Use

- 3.2 to 3.5 million metric tonnes (MT) of DDGS are produced in North America/year
 - ~ 900,000 MT produced in MN-Dakota region
 - ~ 700,000 MT exported to the EU
 - ~ 2.65 million MT fed in U.S. and Canada
 - ~ 2.58 million MT (80%) fed to ruminants
 - ~ 45,000 MT fed in MN turkey industry
 - < 27,000 MT used in swine diets
Distribution of Use of DDGS Produced in North America

- Ruminants
- MN Turkey
- Swine
- Exported to EU
Why Hasn’t DDGS Been Used in Swine Diets?

- Variability of nutrient levels
 - type of grain used
 - variability of corn quality
 - amount of solubles added

- Low amino acid digestibility
 - variable heating and drying temperatures
 - excessive heating = dark color

- High crude fiber
 - low and variable DE and ME estimates
Why Hasn’t DDGS Been Used in Swine Diets?

- **Amino Acid Profile**
 - amino acid balance not well suited to the pig
 - low lysine
 - amino acid imbalance is amplified 3 fold in DDGS vs corn

- Limited recent information on use of DDGS in swine diets

- Cost competitiveness relative to commonly used energy and amino acid ingredients
Why is There Renewed Interest in Feeding DDGS to Swine?

- Increasing quantities of DDGS
 - increased ethanol production to meet oxygenated fuel demand
- New ethanol plants
 - improved fermentation technology and processing = higher feeding value?
- Reduced nutrient variability?
 - corn supply from smaller geographic regions
- Higher P availability = reduced P excretion in manure
- Reduced odor emissions?
How Do Nutrient Levels of MNSD DDGS Compare to Published Values?
MNSD DDGS has Higher Nutrient Levels and Digestibility than Other DDGS Sources

- Energy
 - Digestible energy (DE) and metabolizable energy (ME) > corn
 - Increase in fiber content is offset with increase in fat content

- Amino acids
 - Poor amino acid balance
 - Higher digestible amino acids levels
MNSD DDGS Metabolizable Energy (kcal/ kg) vs. DDGS from an Older Midwestern Plant and Published Values

C.V. = 34.0

Estimated ME, kcal/kg

- MNSD
- MW
- NRC
- HL
- FDST

C.V. = 34.0
MNSD DDGS Apparent Digestible Amino Acid Levels vs. DDGS from an Older Midwestern Plant and Published Values

<table>
<thead>
<tr>
<th>App. Dig. AA</th>
<th>MNSD</th>
<th>MW</th>
<th>NRC (1998)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lysine, %</td>
<td>.44</td>
<td>.00</td>
<td>.31</td>
</tr>
<tr>
<td>Methionine, %</td>
<td>.32</td>
<td>.24</td>
<td>.39</td>
</tr>
<tr>
<td>Threonine, %</td>
<td>.62</td>
<td>.36</td>
<td>.56</td>
</tr>
<tr>
<td>Tryptophan, %</td>
<td>.15</td>
<td>.15</td>
<td>.14</td>
</tr>
<tr>
<td>Valine, %</td>
<td>.92</td>
<td>.51</td>
<td>.88</td>
</tr>
</tbody>
</table>
MNSD DDGS is Higher in Phosphorus Availability Compared to Corn and Published Values

- Available P in DDGS is dramatically improved compared to corn (0.80% vs 0.04%).

- Available P in MNSD DDGS is higher than published values (0.80% vs. 0.59%)
MNSD DDGS Available Phosphorus Levels vs. Published Values

% Available P

MNSD

NRC

[Bar chart showing the comparison between MNSD and NRC available phosphorus levels]
DDGS is Often an Economical Addition to Swine Diets

- Replaces a portion of:
 - Corn
 - Soybean meal
 - Dicalcium phosphate
What Are the Effects of DDGS on Manure Nutrient Management and Air Quality?
Effects of DDGS on Manure Nitrogen Excretion

THE BAD NEWS

- Manure N content increases due to:
 - high crude protein:lysine ratio
 - reduced a.a. digestibility compared to corn & SBM
- Excess N minimized by adding synthetic amino acids to diets
- High levels of DDGS may reduce pig performance due to the energy cost of removing excess N
- May increase ammonia emissions?
Effects of DDGS on Manure Phosphorus Excretion

- THE GOOD NEWS
 - Manure P content is reduced due to:
 - DDGS has more available P compared to corn and soybean meal
 - Amount of supplemental inorganic P or phytase in the diet is decreased.
 - Decreased diet cost
Effects of DDGS on Air Quality

- Feeding DDGS has no positive or negative effects on gas and odor emissions.
Effect of Dietary Treatment on Manure Odor Detection Threshold

MSE ± .1152 P > .10
Effect of Dietary Treatment on Ammonia Emission

![Graph showing the effect of dietary treatment on ammonia emission. The graph plots NH$_3$ (ppm) against week. The control group is represented by red squares, and the DDGS group is represented by blue diamonds. The MSE is ±0.0876, and the P value is greater than 0.10.]
Effect of Dietary Treatment on Hydrogen Sulfide Emission

![Graph showing the effect of dietary treatment on hydrogen sulfide emission. The x-axis represents weeks, and the y-axis represents H₂S (ppm). The graph compares Control and DDGS treatments. The MSE is ±0.0426, and P > 0.10.](image)
Recommended Usage Rates of DDGS in Swine Diets

- Nursery pigs – up to 5%
- Grow-finish pigs – up to 20%
- Gestating sows – up to 50%
- Lactating sows – up to 20%
Summary

- MNSD DDGS:
 - has higher levels and digestibility of most key nutrients
 - has less variability in nutrient levels
 - does not reduce or improve air quality
 - will reduce P excretion
 - is often can be an economical addition to swine diets
Evaluation of the Feeding Value of MNSD DDGS

- Ethanol plants participating in DDGS evaluation:
 - Aberdeen, SD
 - Bingham Lake, MN
 - Luverne, MN
 - Preston, MN
 - Winnebago, MN
 - Benson, MN
 - Claremont, MN
 - Morris, MN
 - Scotland, SD
 - Winthrop, MN