Feeding Value of Reduced–Oil DDGS in Livestock and Poultry Feeds

Dr. Jerry Shurson
Department of Animal Science
University of Minnesota
Oil extraction in the U.S. ethanol industry

- Industry adoption
  - ~ 60% of ethanol plants are currently extracting oil
  - > 70% will be extracting oil by the end or 2012

- Oil uses
  - > 50% is being used in biodiesel production
  - < 50% is used in blended feed–fats (primarily by the poultry industry)

- Impact on DDGS
  - Reduced MT of DDGS
  - Reduced oil decreases energy content and feeding value
    - Crude fat content ranges from 5 to 13%
    - Most reduced oil DDGS is 8 to 9% crude fat
  - Research is being conducted to evaluate this impact
“Back-end” oil extraction process

Approximately 30% of available corn oil may be removed with Method 1. Method 1 and 2 will remove ~65–70%. You must do Method 1 in order to do Method 2.
Crude fat content of DDGS has always varied among and within sources

Spiehs et al. (2002)
GE does not vary as much as DE and ME among DDGS sources

Note: DE and ME of DDGS within experiment were ‘adjusted’ relative to the DE and ME content of the corn basal diet

Source: Stein et al. (2006) [10], Pedersen et al. (2007) [10], Stein et al. (2009) [4], Anderson et al. (2012) [6]
Why does DE and ME content of DDGS vary so much?

- Different processes used in DDGS production
- Variable fat levels among sources
- Variable carbohydrate composition and digestibility
- Particle size varies from 200 to >1200 microns
- Experimental and analytical methods used
Poor relationships between GE, NDF, CP, and ash with crude fat (EE) in DDGS

Summary of published DDGS composition data from the scientific literature
Impact of Reduced–Oil DDGS on ME Content for Swine
Determination of DE and ME content of reduced oil DDGS in swine—Experiment 1

- 11 DDGS sources were evaluated (+basal)
- Range in nutrient profile (DM basis)
  - Crude fat – 8.6 to 13.2%
  - NDF – 28.8 to 44.0%
  - Starch – 0.8 to 3.9%
  - Crude protein – 27.7 to 32.9%
  - Ash – 4.3 to 5.3%
- Particle size ranged from 622 to 1078 µm
- 30% DDGS source was added to a corn basal diet (97.2% corn)
- Fed to 84 kg gilts with an ADFI of 2.4 kg
- 12 replications per DDGS source
- 9–d adaptation period and 4–d total collection period
Determination of DE and ME content of reduced oil DDGS in swine—Experiment 2

- 4 DDGS sources were evaluated (+basal)
- Range in nutrient profile (DM basis)
  - Crude fat – 4.9 to 10.9%
  - NDF – 30.5 to 33.9%
  - Starch – 2.5 to 3.3%
  - Crude protein – 29.0 to 31.2%
  - Ash – 5.4 to 6.1%
- Particle size ranged from 294 to 379 µm
- 30% DDGS source was added to a corn basal diet (97.2%)
- Fed to 106 kg gilts with an ADFI of 2.7 kg
- 15 replications per DDGS source
- 8–d adaptation period and 3–d total collection period
Relationship of RO–DDGS composition to EE content in Experiment 1 and 2

\[ \text{GE, } 0.01 \text{ kcal/kg} = 45.53 + (0.4563 \times \% \text{EE}) \]
\[ R^2 = 0.87 \]

\[ \% \text{NDF} = 26.70 + (0.89 \times \% \text{EE}) \]
\[ R^2 = 0.26 \]

\[ \% \text{TDF} = 36.39 - (0.23 \times \% \text{EE}) \]
\[ R^2 = 0.07 \]

\[ \% \text{CP} = 31.92 - (0.14 \times \% \text{EE}) \]
\[ R^2 = 0.06 \]

\[ \% \text{Ash} = 6.65 - (0.16 \times \% \text{EE}) \]
\[ R^2 = 0.50 \]
### ME ranking of DDGS sources and nutrient content (DM basis) – Experiment 1

<table>
<thead>
<tr>
<th>DDGS Source</th>
<th>ME, kcal/kg</th>
<th>Crude fat, %</th>
<th>NDF, %</th>
<th>Crude protein, %</th>
<th>Starch, %</th>
<th>Ash, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td><strong>3,603</strong></td>
<td>13.2</td>
<td>34.0</td>
<td>30.6</td>
<td>1.3</td>
<td>5.3</td>
</tr>
<tr>
<td>11</td>
<td>3,553</td>
<td>11.8</td>
<td>38.9</td>
<td>32.1</td>
<td>1.1</td>
<td>4.9</td>
</tr>
<tr>
<td>9</td>
<td>3,550</td>
<td>9.7</td>
<td><strong>28.8</strong></td>
<td>29.8</td>
<td>2.8</td>
<td>5.0</td>
</tr>
<tr>
<td>6</td>
<td>3,513</td>
<td>9.6</td>
<td>33.0</td>
<td>30.1</td>
<td>3.4</td>
<td>4.9</td>
</tr>
<tr>
<td>7</td>
<td>3,423</td>
<td>10.1</td>
<td>38.2</td>
<td>30.3</td>
<td>2.2</td>
<td>5.0</td>
</tr>
<tr>
<td>2</td>
<td>3,400</td>
<td>11.1</td>
<td>36.5</td>
<td>29.7</td>
<td><strong>3.9</strong></td>
<td>4.3</td>
</tr>
<tr>
<td>4</td>
<td>3,362</td>
<td><strong>8.6</strong></td>
<td>35.7</td>
<td><strong>32.9</strong></td>
<td><strong>0.8</strong></td>
<td>5.1</td>
</tr>
<tr>
<td>3</td>
<td>3,360</td>
<td>10.8</td>
<td>38.6</td>
<td>29.7</td>
<td>1.6</td>
<td>4.6</td>
</tr>
<tr>
<td>10</td>
<td>3,327</td>
<td>10.0</td>
<td>35.9</td>
<td>32.7</td>
<td>1.0</td>
<td><strong>5.3</strong></td>
</tr>
<tr>
<td>1</td>
<td>3,302</td>
<td>11.2</td>
<td><strong>44.0</strong></td>
<td><strong>27.7</strong></td>
<td>1.8</td>
<td>4.4</td>
</tr>
<tr>
<td>5</td>
<td><strong>3,277</strong></td>
<td>11.1</td>
<td>39.7</td>
<td>31.6</td>
<td>0.9</td>
<td>5.0</td>
</tr>
</tbody>
</table>

*Green = highest value*

*Red = lowest value*
We can’t use crude fat to estimate ME content!! (Experiment 1)

<table>
<thead>
<tr>
<th>DDGS Source</th>
<th>DDGS Source 11</th>
<th>DDGS Source 9</th>
<th>DDGS Source 8</th>
<th>DDGS Source 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME, kcal/kg</td>
<td>3,553</td>
<td>3,550</td>
<td>3,603</td>
<td>3,277</td>
</tr>
<tr>
<td>Crude fat, %</td>
<td>11.8</td>
<td>9.7</td>
<td>13.2</td>
<td>11.1</td>
</tr>
<tr>
<td>Starch, %</td>
<td>1.1</td>
<td>2.8</td>
<td>1.3</td>
<td>0.9</td>
</tr>
<tr>
<td>NDF, %</td>
<td>38.9</td>
<td>28.8</td>
<td>34.0</td>
<td>39.7</td>
</tr>
<tr>
<td>Crude protein, %</td>
<td>32.1</td>
<td>29.8</td>
<td>30.6</td>
<td>31.6</td>
</tr>
<tr>
<td>Ash, %</td>
<td>4.9</td>
<td>5.0</td>
<td>5.3</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Comparing DDGS Source 11 vs. 9:
2.1 percentage unit decrease in fat reduced ME by 3 kcal/kg

Comparing DDGS Source 8 vs. 5:
2.1 percentage unit decrease in fat reduced ME by 326 kcal/kg
Experiment 1

DE, kcal/kg DM = 3414 + (20.72 x %EE)

R² = 0.05

ME, kcal/kg DM = 3103 + (30.28 x %EE)

R² = 0.11

Experiment 2

DE, kcal/kg DM = 3461 + (31.83 x %EE)

R² = 0.22

ME, kcal/kg DM = 3130 + (46.23 x %EE)

R² = 0.32
DDGS ME Prediction Equations from Anderson et al. (2012)

- Dehulled, degnermed corn
- Dried solubles
- Oil
- Starch
- Germ meal (2)
- DDGS (7)
- Gluten meal
- HP-DDG (3)
- Bran (2)
- Gluten feed

(1) ME kcal/kg DM = (0.90 \times \text{GE, kcal/kg}) \ - \ (29.95 \times \% \text{TDF})
  \quad r^2 = 0.72

(2) ME kcal/kg DM = (0.94 \times \text{GE, kcal/kg}) \ - \ (23.45 \times \% \text{NDF}) \
  \ - \ (70.23 \times \% \text{Ash})
  \quad r^2 = 0.68
Anderson equations reasonably predict swine ME content of RO-DDGS (Experiment 1)
Anderson equations reasonably swine ME content of RO-DDGS (Experiment 2)

Equation 1: \[ r = 0.60 \]
Equation 2: \[ r = 0.60 \]
Conclusions

- A percentage unit reduction in crude fat DOES NOT accurately estimate the change in DE and ME in reduced oil-DDGS
- Accurate assessment of fiber content continues to be a challenge in DDGS
- There is considerable variation in chemical composition measurements among laboratories which affects ME prediction
- Recommended swine ME prediction equations for reduced-oil DDGS:
  - ME kcal/kg DM = (0.90 × GE, kcal/kg) − (29.95 × % TDF)
  - ME kcal/kg DM = (0.94 × GE, kcal/kg) − (23.45 × % NDF) − (70.23 × % Ash)
  - ME kcal/kg DM = 4,548 − (49.7 x % TDF) + (52.1 x % EE)
  - ME kcal/kg DM = 3,711 − (21.9 x % NDF) + (48.7 x % EE)
  - ME kcal/kg DM = 4,132 − (57.0 x % ADF)
Conclusions

- Equations containing GE and TDF are most predictive
  - GE and TDF values are more difficult to obtain from commercial laboratories

- If GE cannot be directly determined, the following GE prediction equations can be used:
  - GE kcal/kg DM = 4,195 + (21.26 \times \text{crude protein}) + (48.27 \times \text{crude fat})
  - GE kcal/kg DM = 4,597 + (64.45 \times \% \text{crude fat}) - (52.65 \times \% \text{Ash})
  - GE kcal/kg DM = 4,529 + (54.21 \times \% \text{crude fat})
Impact of Reduced-Oil DDGS on AME Content and Performance for Poultry
## Reduced-oil DDGS nutrient profiles

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Normal DDGS</th>
<th>Medium Oil DDGS</th>
<th>Low Oil DDGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude protein, %</td>
<td>28.9</td>
<td>28.3</td>
<td>27.5</td>
</tr>
<tr>
<td>Crude fat, %</td>
<td>11.2</td>
<td>7.3</td>
<td>5.6</td>
</tr>
<tr>
<td>Crude fiber, %</td>
<td>7.4</td>
<td>6.9</td>
<td>6.8</td>
</tr>
<tr>
<td>Lysine, %</td>
<td>1.00</td>
<td>0.86</td>
<td>0.83</td>
</tr>
<tr>
<td>Methionine, %</td>
<td>0.55</td>
<td>0.58</td>
<td>0.55</td>
</tr>
<tr>
<td>Cysteine, %</td>
<td>0.74</td>
<td>0.70</td>
<td>0.57</td>
</tr>
<tr>
<td>TSAA, %</td>
<td>1.19</td>
<td>1.28</td>
<td>1.12</td>
</tr>
<tr>
<td>Phosphorus, %</td>
<td>0.98</td>
<td>0.84</td>
<td>0.91</td>
</tr>
</tbody>
</table>

Source: Purdum and Kreifels (2012)
## Experimental Diet Formulations

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Control (0% DDGS)</th>
<th>Reduced-oil DDGS Diets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>55.7</td>
<td>45.9</td>
</tr>
<tr>
<td>Soybean meal (47%)</td>
<td>29.5</td>
<td>19.1</td>
</tr>
<tr>
<td>DDGS</td>
<td>0.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Corn oil</td>
<td>2.83</td>
<td>3.02</td>
</tr>
<tr>
<td>Limestone</td>
<td>9.62</td>
<td>9.92</td>
</tr>
<tr>
<td>Dicalcium phosphate</td>
<td>1.58</td>
<td>1.21</td>
</tr>
<tr>
<td>Salt</td>
<td>0.42</td>
<td>0.32</td>
</tr>
<tr>
<td>L-lysine</td>
<td>0.03</td>
<td>0.21</td>
</tr>
<tr>
<td>dl-methionine</td>
<td>0.17</td>
<td>0.16</td>
</tr>
<tr>
<td>VTM premix</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>Calculated M.E. (kcal/kg)</td>
<td>2,860</td>
<td>2,860</td>
</tr>
<tr>
<td>Protein, %</td>
<td>18.0</td>
<td>18.0</td>
</tr>
</tbody>
</table>

No ME adjustments were made for medium and low oil DDGS diets.

Source: Purdum and Kreifels (2012)
GE content and intake of reduced-oil DDGS diets

<table>
<thead>
<tr>
<th>Diet</th>
<th>Dietary GE, kcal/kg</th>
<th>GE intake, kcal/hen/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>3,780</td>
<td>392</td>
</tr>
<tr>
<td>Normal DDGS</td>
<td>3,958</td>
<td>410</td>
</tr>
<tr>
<td>Medium Oil DDGS</td>
<td>3,917</td>
<td>414</td>
</tr>
<tr>
<td>Low Oil DDGS</td>
<td>3,806</td>
<td>404</td>
</tr>
</tbody>
</table>

Source: Purdum and Kreifels (2012)
Effect of reduced-oil DDGS on feed intake

Source: Purdum and Kreifels (2012)
Effect of reduced-oil DDGS on % egg production

% Egg Production

Source: Purdum and Kreifels (2012)
## Effect of reduced-oil DDGS on egg weight and feed conversion

<table>
<thead>
<tr>
<th>Diet</th>
<th>Hen BW, g</th>
<th>Egg Wt., g</th>
<th>Feed Conversion (g feed:g egg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1,515</td>
<td>58.8</td>
<td>1.76</td>
</tr>
<tr>
<td>Normal DDGS</td>
<td>1,541</td>
<td>59.0</td>
<td>1.77</td>
</tr>
<tr>
<td>Med. Oil DDGS</td>
<td>1,506</td>
<td>59.9</td>
<td>1.76</td>
</tr>
<tr>
<td>Low Oil DDGS</td>
<td>1,530</td>
<td>59.7</td>
<td>1.75</td>
</tr>
</tbody>
</table>

Source: Purdum and Kreifels (2012)
Effect of reduced-oil DDGS on yolk color Roche scores

Source: Purdum and Kreifels (2012)
Conclusions

- Reduced-oil DDGS provides equivalent layer performance to “typical” DDGS.

- Hens slightly increase feed intake (2 to 2.4 g/d) when fed reduced-oil DDGS diets.

- Layers will be impacted less than broilers when fed reduced-oil DDGS because of lower diet ME requirements.

- $\text{AME}_n$ of reduced-oil DDGS can be estimated by using the following equation:
  - $\text{AME}_n \text{ (kcal/kg DM)} = 3,517 - (33.27 \times \% \text{ hemicellulose}) + (46.02 \times \% \text{ crude fat}) - (82.47 \times \% \text{ ash})$

  - Rochelle et al. (2011)

  - Hemicellulose can be calculated by % NDF – % ADF
Impact of Reduced–Oil DDGS on Milk Production of Lactating Dairy Cows
Dry matter and protein intake of lactating dairy cows fed 0 to 30% reduced-oil DDGS (3.5% crude fat)

No differences among treatments
Milk yield and N efficiency of lactating dairy cows fed 0 to 30% reduced-oil DDGS (3.5% crude fat)

Linear increase in milk yield (P < 0.05)
N efficiency = kg milk N per d / kg N intake per d
Mjoun et al. (2010)
Milk productivity efficiency of lactating dairy cows fed 0 to 30% reduced-oil DDGS (3.5% crude fat)

Milk prod. efficiency = energy-corrected milk / DMI

Mjoun et al. (2010)

Linear increase (P < 0.06)

Milk prod. efficiency = energy-corrected milk / DMI

Mjoun et al. (2010)
Milk fat concentration and yield of lactating dairy cows fed 0 to 30% reduced-oil DDGS (3.5% crude fat)

Linear increase in milk fat % and fat yield (P < 0.05)
Mjoun et al. (2010)
Milk protein concentration and yield of lactating dairy cows fed 0 to 30% reduced-oil DDGS (3.5% crude fat)

Quadratic effect on milk protein % (P < 0.02) Mjoun et al. (2010)
Milk total solids concentration and yield of lactating dairy cows fed 0 to 30% reduced-oil DDGS (3.5% crude fat)

Linear increase in milk total solids % and yield (P < 0.05) Mjoun et al. (2010)
Summary

- Feeding diets containing up to 30% reduced-oil DDGS (3.5% crude fat):
  - Had no effect on:
    - Dry matter intake
    - Crude protein intake
    - Nitrogen efficiency
    - Milk yield
  - Increased:
    - Milk production efficiency
    - Milk fat % and milk fat yield
    - Milk protein % (quadratically)
    - Milk total solids %
Impact of Reduced-Oil DDGS on Performance and Carcass Composition of Beef Cattle
Reduced-oil DDGS for finishing beef cattle

<table>
<thead>
<tr>
<th></th>
<th>Corn (kg)</th>
<th>DDGS (6.7% crude fat)</th>
<th>DDGS (12.9% crude fat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial BW, kg</td>
<td>403</td>
<td>402</td>
<td>402</td>
</tr>
<tr>
<td>Final BW, kg</td>
<td>587&lt;sup&gt;a&lt;/sup&gt;</td>
<td>587&lt;sup&gt;a&lt;/sup&gt;</td>
<td>604&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>DMI, kg/day</td>
<td>11.1</td>
<td>11.1</td>
<td>11.1</td>
</tr>
<tr>
<td>ADG, kg</td>
<td>1.55&lt;sup&gt;a&lt;/sup&gt;</td>
<td>1.55&lt;sup&gt;a&lt;/sup&gt;</td>
<td>1.68&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>Feed:Gain</td>
<td>7.19</td>
<td>7.19</td>
<td>6.58</td>
</tr>
<tr>
<td>HCW, kg</td>
<td>370&lt;sup&gt;a&lt;/sup&gt;</td>
<td>370&lt;sup&gt;a&lt;/sup&gt;</td>
<td>380&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>12&lt;sup&gt;th&lt;/sup&gt; rib fat, mm</td>
<td>11.9</td>
<td>13.2</td>
<td>13.5</td>
</tr>
<tr>
<td>Loin muscle area, cm²</td>
<td>864</td>
<td>832</td>
<td>845</td>
</tr>
<tr>
<td>Marbling score</td>
<td>614</td>
<td>591</td>
<td>617</td>
</tr>
</tbody>
</table>

<sup>a,b</sup>Means with different superscripts are different (<i>P</i> < 0.05).

Source: University of Nebraska (Gigax et al., 2011).

For each one percentage point decrease in DDGS oil content, NE<sub>g</sub> decreases 1.3%
Conclusions

- Feeding reduced-oil DDGS (6.7% crude fat):
  - Provides equal growth performance and carcass quality compared to corn
  - Reduces growth performance compared to “typical” DDGS (12.9% crude fat)
  - $\text{NE}_g$ content of reduced-oil DDGS can be estimated for beef cattle based on:
    - Each one percentage point decrease in DDGS oil content decreases $\text{NE}_g$ by 1.3%