Effect of Ethanol Co-Products on Carcass and Beef Quality

C. Reinhardt and A. DiCostanzo
Kansas State University
University of Minnesota
DDGS Research in Ruminants

• NCR-88 Beef Growing-Finishing Systems
 ➢ Summarized studies in 1984 (NCR No. 297)
 – Characterization of fermentation by-products
 o Higher protein concentration than corn
 o Similar or greater RUP
 o Similar energy concentration as corn
 – DDGS as a protein source
 o Replacement for other protein sources
 » When combined with urea of equal value as SBM
 o As a bypass source
 » Fortified with urea > urea alone
 » More efficient protein source when combined with urea than SBM
A Prophetic Statement

- DDGS as an energy source
 - “if abundant supplies of wet distillers’ grains should become available—as a result, for example, of increased production of fuel alcohol—this by-product could be used as an energy source in livestock feeds.”

 NCR No. 297
What Will be The Impact on Beef Quality?

- Ethanol Co-Products
 - high in NDF
 - high in fat
 - some high in moisture
 - palatable
 - inexpensive
Effects of Ethanol Co-Products

- Hot carcass weight
- Marbling
- Yield grade
- Quality grade
- Fat depth
- Ribeye area
Data Set

- 106 treatment means
- 21 studies
- 625 pens
- 4,752 cattle
- Co-prod = 0 to 75%
- DOF = 151, 58 to 299
- In BW, lb = 727, 421 to 948
- ADG, lb = 3.31, 1.81 to 4.55
- DMI, lb/d = 20.6, 15.4 to 26.0
- FTG = 6.3, 5.1 to 8.3
- End BW, lb = 1212, 997 to 1394
- HCW, lb = 754, 632 to 870
- Fat, in = 0.42, 0.19 to 0.62
- REA, in² = 12.8, 11.1 to 15.0
- Choice, % = 55.9, 16.7 to 95
- YG = 2.7, 1.8 to 3.6
YG = 2.56 + 0.0080*DG - 0.00014*DG^2

R^2=0.903; n=89

YG vs Level of Distillers Grains

Percent Dist Grains (DM basis)

Yield Grade

29%
Fat Depth and Co-product

Fat depth, in

Co-product, %

Raw
Fitted

22%
Marbling Score

Marbling vs DG
Marbling vs DG and YG

MARB vs DG
MARB = 516.73 + 1.055*DG - 0.032*DG^2
R^2 = 0.933; n = 86

MARB vs DG and YG
MARB = 374.72 - 6.44*DG + 54.67*YG + 2.54*DG*YG + 0.139*DG^2 - 0.062*DG^2*YG
R^2 = 0.962; n = 74

23%
MARB vs DG

\[\text{MARB} = 516.73 + 1.055 \times \text{DG} - 0.032 \times \text{DG}^2 \]
\[\text{R}^2 = 0.933; \ n = 86 \]

MARB vs DG and YG

\[\text{MARB} = 374.72 - 6.44 \times \text{DG} + 54.67 \times \text{YG} + 2.54 \times \text{DG} \times \text{YG} + 0.139 \times \text{DG}^2 - 0.062 \times \text{DG}^2 \times \text{YG} \]
\[\text{R}^2 = 0.962; \ n = 74 \]
Effects on Marbling and YG

• At intermediate concentrations, co-products increase YG
 ➢ effect on increasing fat depth

• At intermediate concentrations, co-products increase YG, but maintain marbling
The graph shows the relationship between marbling score and coproduct given YG. The data points indicate that the optimal coproduct for achieving a marbling score of 26% is approximately 30 units. The graph includes lines for different YG categories (YG 1 to YG 5) with distinct colors, allowing for easy comparison across different categories. The marbling score ranges from 0 to 800, while the coproduct ranges from 0 to 70.
Effects on Marbling and YG

- At a given YG end point, effects of co-products are variable
- At low YG (lower energy diets or lean cattle)
 - co-products reduce marbling at any inclusion
- At YG 3
 - co-products have no effect on marbling up to 20% inclusion
- At high YG (extended DOF, early-maturing cattle or heifers)
 - co-products increase marbling at low to intermediate inclusion
Are They Really Effects of Co-Products?

- Difficult to separate from this dataset
- During, experimental feeding of ethanol co-products, energy, protein and ether extract of diet are permitted to fluctuate
- Therefore, is marbling affected because of co-products or something that co-products affect?
 - ether extract intake
 - starch intake
 - energy intake
Marbling and Dietary Fat

Dietary Fat, %

Marbling Score

- Raw
- Fitted

DiCostanz
Fall 06
Marbling and ME Intake

Marbling score vs ME Intake, Mcal/d

NE₀:
- 0% Co-product: 61.4
- 10% Co-product: 62.4
- 20% Co-product: 62.0
- 30% Co-product: 60.1
- 40% Co-product: 62.7
- 50% Co-product: 61.1

DiCostanz
 Fall 06
Ether Extract and Co-Product

Ether extract, %

Co-product, % DM
ME Intake and Co-Product Content

Co-product, %

ME Intake, Mcal/d

0 10 20 30 40 50 60 70 80

DiCostanz
Fall 06
Co-product Effects

• Effect of ether extract on marbling score is clear
 ➢ virtually no change in marbling between 3.7% and 5.7% ether extract

• Effect of co-product on marbling score is dependent on ME intake
 ➢ At ME intakes up to 30 Mcal/d, co-product inclusion at up to 50% is not detrimental to marbling
 ➢ At lower ME intakes, co-product inclusion is actually positive on marbling
When feeding ethanol co-products, the effect of the inherent increase in dietary ether extract may be of greater influence on marbling than that of increased ME intake.
REA and Co-product

Co-product, %

REA, in²

- Raw
- 1150-lb
- 1250-lb
- 1350-lb
Effects on REA

• If one ignores final BW, REA is decreased by co-product inclusion at a rate of 0.004 in2 for each percentage increase in co-product inclusion

• When including final BW, the effect of feeding co-products is almost canceled out

 ➢ 1 lb increase in final BW = 0.004 in2 increase in REA
Summary

- Feeding ethanol co-products:
 - increased YG 0.17 units up to 30% inclusion
 - had no effect on marbling at up to 30% inclusion when end point YG = 3
 - reduced marbling 25 and 50 points at 40% and 50% inclusion, respectively
 - reduced marbling at up to 40% inclusion when end point YG ≤ 2
 - slightly increased marbling at up to 30% inclusion when end point YG = 4
 - reduced marbling 20 and 80 points at 40% and 50% inclusion, respectively

- Marbling depression may be due to excessive dietary fat or reduced dietary starch
Summary

• The effects of ethanol co-products are on REA are dependent on end weight
 ➢ When considering both co-product inclusion and end-weight, the effects of co-products on REA are minimal
Fatty Acid Composition

Omega-6:Omega-3

Calculated Ratio

SF C DG C DG S DG W DG D DG

SEM = 0.506
$P < 0.027$

SEM = 0.506
$P < 0.001$

SEM = 0.506
$P < 0.038$
FA Profile Summary

- Ethanol co-products increased the omega-6:omega-3 ratio
- Sorghum co-products yielded better omega-6:omega-3 ratios
- Wet co-products yielded better omega-6:omega-3 ratios
- Omega-6:omega-3 ratios were at least three times greater than recommended (2.3:1)
Research Needs

• Additional data points to strengthen analyses
 ➢ carcass trait data missing
 – summarize existing pen data for a more robust analysis?
 – analyze response on quality grade using appropriate statistics (categorical data)
 – incorporate data from Texas research
 – conduct multiple component analyses to prevent collinearity between independent variables
 o yield grade and co-product content
 o ether extract and energy intake
Research Needs

• Conduct research to test two hypotheses:

 ➢ Ether extract of diet, and not an intrinsic component of ethanol co-products, affects marbling deposition

 ➢ Overall energy intake, and not an intrinsic component of ethanol co-products, affects marbling deposition