Using Distiller’s Dried Grains with Solubles in Poultry Diets

Dr. Jerry Shurson
Professor
Department of Animal Science
University of Minnesota

An Overview of DDGS Production
Production of DDGS

- Tightly linked to the production of fuel ethanol
- DDGS is a co-product of the dry milling ethanol production process
- About 40% of ethanol is produced using dry milling
- The other 60% of ethanol is produced by wet milling
 - co-products include: corn gluten feed, corn gluten meal, and corn germ meal

Components of Yellow Dent Corn

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starch</td>
<td>61.0 %</td>
</tr>
<tr>
<td>Corn Oil</td>
<td>3.8 %</td>
</tr>
<tr>
<td>Protein</td>
<td>8.0 %</td>
</tr>
<tr>
<td>Fiber</td>
<td>11.2 %</td>
</tr>
<tr>
<td>Moisture</td>
<td>16.0 %</td>
</tr>
</tbody>
</table>

Slide courtesy of Ms. Kelly Davis, CVEC
Production of DDGS

- Yeasts and enzymes are used to ferment the starch fraction of corn
- Ethanol and carbon dioxide are produced
- Distiller’s grain and distiller’s solubles are the residues remaining after fermentation
- These fractions and blended and dried to produce distiller’s dried grains with solubles (DDGS)
Dry-Milling Average Yield Per Bushel

- Ethanol 4.2 liters
- DDGS 8.2 kg
- CO$_2$ 8.2 kg

Slide courtesy of Ms. Kelly Davis, CVEC
19 new ethanol plants are currently under construction
- additional capacity is being added to existing plants
- DDGS will increase from 3.3 million tonnes in 2000 to 5.5 million tonnes in 2005
 - 66% increase in supply of DDGS
DDGS Production and Use

- 3.2 to 3.5 million metric tonnes (MT) of DDGS are produced in North America/year
 - ~ 900,000 MT produced in MN-Dakota region
 - ~ 700,000 MT exported to the EU
 - ~ 2.65 million MT fed in U.S. and Canada
 - ~ 2.58 million MT (80%) fed to ruminants
 - ~ 45,000 MT fed in MN turkey industry
 - ~ 27,000 MT used in swine diets

Markets for DDGS Produced in North America

- Ruminants
- MN Turkey
- Swine
- Exported EU
Use of DDGS in Swine and Poultry Diets is Increasing

- DDGS produced by new Midwestern ethanol is higher in nutrient content and digestibility than DDGS from older plants
- Increased supply of DDGS has made it more economical to replace some of the corn, soybean meal, and dicalcium phosphate

The Use of DDGS in Poultry Diets
Historical Use of DDGS in Poultry Diets

- Fed at low inclusion rates in U.S. poultry industry for many years
 - High B vitamin content (solubles)
 - Source of unidentified growth/reproduction factors?
 - Positive effect on palatability (Alenier and Combs, 1981)
 - Protein source at higher dietary inclusion levels

Unidentified Growth or Hatchability Factor

- Growth response (Couch et al., 1957)
 - 5% DDGS in turkey diets
 - 17-32% improvement in gain

- Feed preference (Alenier & Combs, 1981)
 - 10% DDGS in chicken layer diets

- Reproduction improvement (Manley, 1978)
 - 3% DDGS in turkey breeder hen diets
 - Improvement in egg numbers and hatch (late lay)
DDGS As Protein Supplement

- Limiting amino acids (Parsons et al., 1983)
 - Lysine
 - Tryptophan
 - Arginine (perhaps equally limiting with trp)

- Dietary lysine and energy adjustments are needed with inclusion of DDGS
 - Growth
 - Feed conversion

Performance of Broiler Chickens (0-42 days) to DDGS in Diets Adjusted and Not Adjusted for Energy (Waldroup et al., 1981)

<table>
<thead>
<tr>
<th>DDGS Inclusion Level (%)</th>
<th>BW (g)</th>
<th>Gain/Feed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fixed Energy</td>
<td>Variable Energy</td>
</tr>
<tr>
<td>0</td>
<td>1288</td>
<td>1206</td>
</tr>
<tr>
<td>5</td>
<td>1237</td>
<td>1227</td>
</tr>
<tr>
<td>10</td>
<td>1237</td>
<td>1203</td>
</tr>
<tr>
<td>15</td>
<td>1220</td>
<td>1165</td>
</tr>
<tr>
<td>20</td>
<td>1240</td>
<td>1164</td>
</tr>
<tr>
<td>25</td>
<td>1247</td>
<td>1096*</td>
</tr>
</tbody>
</table>

* Different from control
Lysine Digestibility of DDGS for Poultry

- Lower than corn due to drying process
- Lysine bioavailability = 66%
 - Parsons et al. (1983)
- Lysine digestibility = 65%
 - NRC (1994)

Lysine Availability (%)

<table>
<thead>
<tr>
<th>Source</th>
<th>Lysine Bioavail.</th>
<th>Lysine Digest.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combs & Bossard (1969)</td>
<td>71-93</td>
<td>----</td>
</tr>
<tr>
<td>Parsons (1983)</td>
<td>66</td>
<td>82</td>
</tr>
<tr>
<td>Heartland (1998)</td>
<td>----</td>
<td>57</td>
</tr>
</tbody>
</table>
Ingredient Amino Acids (% of Protein)

<table>
<thead>
<tr>
<th>AA</th>
<th>SBM</th>
<th>Corn</th>
<th>MBM</th>
<th>Canola</th>
<th>DDGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>M+C</td>
<td>3.0</td>
<td>4.6</td>
<td>2.4</td>
<td>4.3</td>
<td>4.2</td>
</tr>
<tr>
<td>Lys</td>
<td>6.2</td>
<td>3.0</td>
<td>5.4</td>
<td>5.5</td>
<td>2.8</td>
</tr>
<tr>
<td>Iso</td>
<td>4.3</td>
<td>3.2</td>
<td>3.0</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td>Arg</td>
<td>7.2</td>
<td>5.0</td>
<td>6.7</td>
<td>6.0</td>
<td>4.4</td>
</tr>
<tr>
<td>Trp</td>
<td>1.5</td>
<td>0.9</td>
<td>0.7</td>
<td>1.5</td>
<td>0.8</td>
</tr>
<tr>
<td>Thr</td>
<td>4.0</td>
<td>3.5</td>
<td>3.2</td>
<td>4.2</td>
<td>3.8</td>
</tr>
<tr>
<td>Val</td>
<td>4.6</td>
<td>4.8</td>
<td>3.8</td>
<td>4.8</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Amino Acid Digestibility (% of total)

<table>
<thead>
<tr>
<th>AA</th>
<th>Corn</th>
<th>SBM</th>
<th>MBM</th>
<th>DDGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Met</td>
<td>97.9</td>
<td>94.3</td>
<td>92.3</td>
<td>88.5</td>
</tr>
<tr>
<td>Cys</td>
<td>88.2</td>
<td>-----</td>
<td>84.7</td>
<td>78.4</td>
</tr>
<tr>
<td>Lys</td>
<td>86.2</td>
<td>91.8</td>
<td>90.3</td>
<td>78.6</td>
</tr>
<tr>
<td>Arg</td>
<td>96.1</td>
<td>93.5</td>
<td>94.0</td>
<td>92.5</td>
</tr>
<tr>
<td>Tryp</td>
<td>96.8</td>
<td>93.7</td>
<td>95.1</td>
<td>91.8</td>
</tr>
<tr>
<td>Thr</td>
<td>81.1</td>
<td>84.3</td>
<td>90.1</td>
<td>82.5</td>
</tr>
<tr>
<td>Iso</td>
<td>86.4</td>
<td>90.9</td>
<td>92.2</td>
<td>89.1</td>
</tr>
<tr>
<td>Val</td>
<td>93.3</td>
<td>89.4</td>
<td>90.2</td>
<td>88.1</td>
</tr>
</tbody>
</table>
Energy Utilization of DDGS by Poultry

- Crude protein = 27.4%
- Crude fat = 9%
- ME, kcal/kg = 2,480
- ME/GE, % = 49.1
- ME (% of corn) = 74.1

Maximum Inclusion Rates of DDGS in Poultry Diets

- Turkey, pullet, and broiler starter = 5%
- Turkey and broiler finisher = 15%
- Pullet developer = 10%
- Layer (peak) = 10%
- Layer (late lay) = 10%

Source: ME Jackson, 2002 Midwest Poultry Federation Convention, St. Paul, MN
Use of DDGS in Poultry Diets

- High inclusion rates have also provided good results
 - Favorable results with 25% DDGS in broiler diets
 - Waldroup et al., 1981
 - 15% DDGS in layer diets reduces fatty liver incidence
 - Jensen et al., 1974; Jensen, 1987; Akiba et al., 1983
 - 12% DDGS turkey diets gave similar performance to corn-soybean meal diets
 - Noll, 2002

DDGS Quality is Highly Variable

- Nutritionists want PREDICTABILITY AND CONSISTENCY in feed ingredients.
- The keys for getting maximum value from DDGS are:
 - “Know what you have (or want)”
 - and
 - “Know how to use it”
DDGS Quality is Variable

- Color ranges from very light to very dark
- Odor ranges from sweet to smoky or burnt
- Range in concentration in selected nutrients:
 - Dry matter – 87 to 93%
 - Crude protein – 23 to 29%
 - Crude fat – 3 to 12%
 - Ash – 3 to 6%
 - Lysine – 0.59 to 0.89%

Source: Cromwell et al. (1993)
Nutrient Profile of Corn Distiller’s Dried Grains with Solubles (DM Basis)

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>MW DDGS</th>
<th>Low Quality DDGS</th>
<th>NRC (1998)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter, %</td>
<td>88.9</td>
<td>88.3</td>
<td>93.0</td>
</tr>
<tr>
<td>Crude protein, %</td>
<td>30.2</td>
<td>28.1</td>
<td>29.8</td>
</tr>
<tr>
<td>Fat, %</td>
<td>10.9</td>
<td>8.2</td>
<td>9.0</td>
</tr>
<tr>
<td>Fiber, %</td>
<td>8.8</td>
<td>7.1</td>
<td>4.8</td>
</tr>
<tr>
<td>Calcium, %</td>
<td>0.06</td>
<td>0.44</td>
<td>0.22</td>
</tr>
<tr>
<td>Phosphorus, %</td>
<td>0.89</td>
<td>0.90</td>
<td>0.83</td>
</tr>
<tr>
<td>P availability, %</td>
<td>90.0</td>
<td>?</td>
<td>79.0</td>
</tr>
<tr>
<td>DE, kcal/kg</td>
<td>3965</td>
<td>3874</td>
<td>3449</td>
</tr>
<tr>
<td>ME, kcal/kg</td>
<td>3592</td>
<td>3521</td>
<td>3038</td>
</tr>
<tr>
<td>Lys, %</td>
<td>0.83</td>
<td>0.53</td>
<td>0.67</td>
</tr>
<tr>
<td>App. Dig. Lys, %</td>
<td>0.44</td>
<td>0.00</td>
<td>0.34</td>
</tr>
<tr>
<td>Met, %</td>
<td>0.55</td>
<td>0.50</td>
<td>0.54</td>
</tr>
<tr>
<td>App. Dig. Met, %</td>
<td>0.32</td>
<td>0.24</td>
<td>0.42</td>
</tr>
<tr>
<td>Thr, %</td>
<td>1.13</td>
<td>0.98</td>
<td>1.01</td>
</tr>
<tr>
<td>App. Dig. Met, %</td>
<td>0.62</td>
<td>0.36</td>
<td>0.60</td>
</tr>
<tr>
<td>Trp, %</td>
<td>0.24</td>
<td>0.19</td>
<td>0.27</td>
</tr>
<tr>
<td>App. Dig Trp, %</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Growth of Chicks Fed Nine Sources of DDGS

![Graph showing growth of chicks fed nine sources of DDGS]

- **DDGS Source**
 - A
 - B
 - C
 - D
 - E
 - F
 - G
 - H
 - I

- **Grams Per Day**
 - 0
 - 50
 - 100
 - 150
 - 200
 - 250
 - 300
 - 350
 - 400
 - 450
 - 500

- **Gain**
Feed Conversion of Chicks Fed Nine Sources of DDGS

Nutritional Value of DDGS for Poultry

- Must use high quality DDGS
 - Golden color = high amino acid digestibility
- Excellent energy and available phosphorus source
- Nutritional value higher than previously thought
- Unidentified growth factors?
 - 5% DDGS resulted in 17-32% improvement in gain
 - 3% DDGS in turkey breeder hen diets increased egg numbers and hatch
- Effective partial replacement for corn and soybean meal
Quality Considerations for Selecting DDGS Sources for Swine and Poultry

Nutrient Specifications
- Moisture – maximum 12%
- Protein – minimum 26.5%
- Fat – minimum 10%
- Fiber – maximum 7.5%

Physical characteristics
- Bulk density – .44 to .48 kg/cubic meter
- Particle size:
 - maximum coarse particles - 10% on 2000 screen
 - maximum fine particles - 15% on 600 screen & in pan
- Smell – fresh, fermented
- Color – goldenrod
Maximizing the Value of Corn DDGS in Poultry Diets

- Formulate diets using digestible amino acid values
- High available P reduces the level of dietary P supplementation
- Adding 5% DDGS may improve feed preference, egg number, and hatchability in breeder hens

Limitations of Using DDGS in Poultry Diets

- Must be golden color and highly digestible
- High fiber limits its maximum inclusion rate in poultry diets
- Excess nitrogen can be minimized by using synthetic amino acids
U of M DDGS Web Site

We have developed a DDGS web site featuring:
* research summaries (swine, poultry, dairy, & beef)
* presentations given
* links to other DDGS related web sites

Visit this web site at:
www.ddgs.umn.edu