Pelleting and Distiller’s Dried Grains with Solubles

Kim B. Koch, Ph.D.
Northern Crops Institute
North Dakota State University
Practical issues with DDGS Used in Feed Manufacturing

- **Product is Inconsistent – Unpredictable**
 - Nutrient content
 - Protein, Fat, Fiber, Moisture, etc.
 - Nutrient digestibility
 - esp. for lysine
 - Physical Characteristics
 - Bulk density, Particle size, Angle of Repose
- **Logistics**
 - producers, brokers/consolidators, shippers
- **Handling**
 - Flowability
- **Availability**
 - Price
DDGS Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Bulk Density, kg/hl</th>
<th>Particle Size, microns</th>
<th>Protein, %</th>
<th>Fat, %</th>
<th>Fiber, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knott, Shurson, Goihl</td>
<td>Avg. 45.9 Range 39.6 – 50.6</td>
<td>Avg. 1282 Range 612 – 2125</td>
<td>Avg. 26.6 Range 24.5 – 28.4</td>
<td>Avg. 10.0 Range 9.2 – 11.6</td>
<td>Avg. 6.9 Range 5.8 – 9.1</td>
</tr>
<tr>
<td>Koch</td>
<td>Avg. 48.4 Range 45.4 – 51.3</td>
<td>Avg. 588 Range 387 – 810</td>
<td>Avg. 27.6 Range 26.3 – 29.9</td>
<td>Avg. 9.2 Range 8.1 – 10.2</td>
<td>Avg. 10.0 Range 5.5 – 16.0</td>
</tr>
</tbody>
</table>
Decreased pellet quality?

- Depends on physical and nutrient characteristics of DDGS
 - Particle size, density
 - Fat, fiber, protein, moisture
- Depends on ingredients
 - Some are complementary
- Depends on pellet mill operation
 - Die specifications
 - Performance ratio
 - Die speed
 - Conditioning time and temp
DDGS and Pellet Production

- Pellet trials
 - Pellet die specifications
 - .25 inch hole (6.4 mm)
 - 10:1 performance ratio
 - Pellet die peripheral speed
 - 1,200 ft/min. (365.8 m/min.)
 - Conditioning chamber
 - 150 rpm
 - Retention time = 30 sec.
 - Feed rate
 - Constant
 - Same setting all trials
Pellet Production

Durum wheat midds + DDGS (Koch)

<table>
<thead>
<tr>
<th></th>
<th>100%</th>
<th>80/20</th>
<th>70/30/</th>
<th>60/40</th>
<th>50/50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volts</td>
<td>458.7</td>
<td>456.7</td>
<td>456.0</td>
<td>451.3</td>
<td>452.8</td>
</tr>
<tr>
<td>Amps</td>
<td>24.2</td>
<td>28.8</td>
<td>28.5</td>
<td>34.5</td>
<td>32.7</td>
</tr>
<tr>
<td>Kw</td>
<td>17.3</td>
<td>21.0</td>
<td>20.6</td>
<td>25.2</td>
<td>24.4</td>
</tr>
<tr>
<td>P.F.</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>mt/hr</td>
<td>0.7</td>
<td>0.8</td>
<td>0.8</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>kwh/mt</td>
<td>23.8</td>
<td>26.0</td>
<td>23.9</td>
<td>27.3</td>
<td>27.5</td>
</tr>
<tr>
<td>PDI %</td>
<td>96.1</td>
<td>96.3</td>
<td>94.4</td>
<td>95.3</td>
<td>93.3</td>
</tr>
<tr>
<td>kg/hl</td>
<td>66.6</td>
<td>63.1</td>
<td>63.3</td>
<td>63.6</td>
<td>60.0</td>
</tr>
<tr>
<td>C°</td>
<td>57</td>
<td>72-75</td>
<td>68-70</td>
<td>48-50</td>
<td>53</td>
</tr>
</tbody>
</table>
DDGS and Pellet Production

Koch

- Durum wheat midds and DDGS
 - Increasing DDGS from 0 – 50%
 - A 35% increase in amperage
 - A 41% increase in kilowatts
 - A 15.5% increase in kwh/mt
 - A 3% decrease in pellet quality measured as Pellet Durability Index (PDI)
 - An 11% decrease in pellet bulk density
 - Increased energy use
 - Added $0.11/mt to production costs
 - Decreased pellet quality may cause:
 - reduced feed efficiencies
 - Increased transportation costs
Pellet Production

Durum wheat midds + DDGS + Peas

(Koch)

<table>
<thead>
<tr>
<th></th>
<th>100%</th>
<th>60/20/20</th>
<th>60/40</th>
<th>50/30/20</th>
<th>50/50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volts</td>
<td>458.7</td>
<td>448.1</td>
<td>456</td>
<td>451.3</td>
<td>452.8</td>
</tr>
<tr>
<td>Amps</td>
<td>24.2</td>
<td>33.9</td>
<td>28.5</td>
<td>34.5</td>
<td>32.7</td>
</tr>
<tr>
<td>Kw</td>
<td>17.3</td>
<td>24.5</td>
<td>20.6</td>
<td>25.2</td>
<td>24.4</td>
</tr>
<tr>
<td>P.F.</td>
<td>.9</td>
<td>.92</td>
<td>.92</td>
<td>.92</td>
<td>.93</td>
</tr>
<tr>
<td>mt/hr</td>
<td>.7</td>
<td>.9</td>
<td>.8</td>
<td>.9</td>
<td>.8</td>
</tr>
<tr>
<td>kwh/mt</td>
<td>23.8</td>
<td>26.9</td>
<td>23.9</td>
<td>27.3</td>
<td>27.5</td>
</tr>
<tr>
<td>PDI %</td>
<td>96.1</td>
<td>96.6</td>
<td>94.4</td>
<td>95.3</td>
<td>93.3</td>
</tr>
<tr>
<td>kg/hl</td>
<td>66.6</td>
<td>67.6</td>
<td>63.3</td>
<td>63.6</td>
<td>60</td>
</tr>
<tr>
<td>C°</td>
<td>57</td>
<td>48 - 50</td>
<td>68-70</td>
<td>48 - 50</td>
<td>53</td>
</tr>
</tbody>
</table>
Durum wheat midds, DDGS and dry peas

- midds at 60%, DDGS at 20%, peas at 20%,
 - Compared to 100% midds
 - 40% increase in amps
 - 42% increase in kw
 - 13% increase in kwh/mt
 - 0.5% increase in PDI
 - Compared to 60% midds, 40% DDGS
 - 21% increase in amps
 - 18% increase in kw
 - 7.6% increase in kwh/mt
 - 2% increase in PDI
DDGS and Pellet Production

Koch

- Durum wheat midds, DDGS and dry peas
 - midds at 50%, DDGS at 30%, peas at 20%,
 - Compared to 100% midds
 - 43% increase in amps
 - 46% increase in kw
 - 15% increase in kwh/mt
 - 0.8% decrease in PDI
 - Compared to 50% midds, 50%DDGS
 - 6% increase in amps
 - 3% increase in kw
 - 2% increase in PDI
 - 1% decrease in kwh/mt
Pellet Production
Barley malt sprouts and DDGS (Koch)

<table>
<thead>
<tr>
<th></th>
<th>100%</th>
<th>90/10</th>
<th>80/20</th>
<th>70/30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volts</td>
<td>447.3</td>
<td>451.4</td>
<td>449.6</td>
<td>454.4</td>
</tr>
<tr>
<td>Amps</td>
<td>47.2</td>
<td>43</td>
<td>35.2</td>
<td>28.3</td>
</tr>
<tr>
<td>Kw</td>
<td>34.8</td>
<td>32.1</td>
<td>26.9</td>
<td>21</td>
</tr>
<tr>
<td>P.F.</td>
<td>0.93</td>
<td>0.93</td>
<td>0.95</td>
<td>0.93</td>
</tr>
<tr>
<td>mt/hr</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.9</td>
</tr>
<tr>
<td>kwh/mt</td>
<td>46.1</td>
<td>41.4</td>
<td>33.4</td>
<td>24.6</td>
</tr>
<tr>
<td>PDI %</td>
<td>95.9</td>
<td>97.1</td>
<td>96.1</td>
<td>92.5</td>
</tr>
<tr>
<td>kg/hl</td>
<td>63.5</td>
<td>60.2</td>
<td>59.3</td>
<td>57.6</td>
</tr>
<tr>
<td>C°</td>
<td>43</td>
<td>48</td>
<td>52</td>
<td>52</td>
</tr>
</tbody>
</table>
DDGS and Pellet Production

- Koch
 - Barley malt sprouts and DDGS
 - Increasing DDGS from 0 – 30%
 - A 40% decrease in amperage
 - A 40% decrease in kilowatts
 - A 47% decrease in kwh/mt
 - A 3% decrease in pellet quality measured as Pellet Durability Index (PDI)
 - A 10% decrease in pellet bulk density
 - Decreased energy use
 - saved $0.65/mt in production costs
 - Decreased pellet quality may cause
 - reduced feed efficiencies
 - Increased transportation costs
Pellet Production

Typical swine grower diet (Koch)

<table>
<thead>
<tr>
<th></th>
<th>Swine grower</th>
<th>substitute 10% DDGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volts</td>
<td>467.6</td>
<td>459.1</td>
</tr>
<tr>
<td>Amps</td>
<td>42.1</td>
<td>41.6</td>
</tr>
<tr>
<td>Kw</td>
<td>31.3</td>
<td>32.1</td>
</tr>
<tr>
<td>P.F.</td>
<td>.9</td>
<td>.9</td>
</tr>
<tr>
<td>mt/hr</td>
<td>2.9</td>
<td>3.1</td>
</tr>
<tr>
<td>kwh/mt</td>
<td>10.2</td>
<td>9.5</td>
</tr>
<tr>
<td>PDI %</td>
<td>84.7</td>
<td>70</td>
</tr>
<tr>
<td>C°</td>
<td>77</td>
<td>76</td>
</tr>
</tbody>
</table>
DDGS and Pellet Production

Koch

- Comparing a typical swine grower to the same diet with 10% substituted DDGS
 - Substituting 10% DDGS
 - A 1% decrease in amperage
 - A 2% increase in kilowatts
 - A 7% decrease in kwh/mt
 - A 7% increase in production rate (mt/hr)
 - A 17% decrease in pellet quality measured as Pellet Durability Index (PDI)
 - Decreased energy use
 - saved $0.02/mt in production costs
 - Decreased pellet quality may cause
 - reduced feed efficiencies