Feed Manufacturing with DDGS

Kim Koch, Ph.D.
Northern Crops Institute
United States Ethanol Outlook

Values are Underestimated

Dry-Milling Average Yield Per Bushel of Corn

Ethanol 2.7 gal. (10.2 liters); CO₂ 18 lbs. (8.2 kg); DDGS 18 lbs. (8.2 kg)
• Every gallon of ethanol produced = 6.67 lbs. (3.02 kg) of DDGS
• Current estimate is ?? million gallons = ???. mmt of DDGS

Source: H. D. Tilstra
What is DDGS?

- DDGS is a by-product of fuel ethanol production
 - Typically from a dry-grind facility
 - Whole kernel processing
- Nutrient content of DDGS depends on the grain source
 - Corn DDGS – Midwest US
 - Wheat DDGS – Canada
 - Sorghum (milo) DDGS – Great Plains US
 - Barley DDGS – Canada/US
- Other by-products
 - DDGS from beverage alcohol – whiskey distilleries (dry grind)
 - Corn gluten feed – high fructose corn syrup, starch (wet mill)
 - Corn gluten meal – high fructose corn syrup, starch (wet mill)
 - Brewer’s grains (wet/dry) – beer production (dry grind)
- Nutrient profile of by-products from dry-mill, wet-mill, and beverage alcohol production is different

from Shurson, 2006
Dry Milling Process

Corn → Ground Cooked → Liqui-faction → Distiller's Grains (DDG) → Separated Thin Stillage Condensed Solubles (CDS) → Distilled Ethanol

DDG + S (DDGS)

Source: H. D. Tilstra
Dry-Grind Ethanol By-Products used by Livestock (Poultry)

- Wet distiller’s grains
 - Fed primarily to beef, some dairy – Total Mixed Rations (TMRs)
- Dry distiller’s grains (DDG)
 - Fed to beef and dairy – concentrates
- Wet distiller’s grains with solubles (WDGS)
 - Fed to beef and dairy - TMRs
- Dried distiller’s grains with solubles (DDGS)
 - Fed to dairy, swine, poultry, some beef – concentrates, complete feeds
- Modified wet cake (blend of wet and dry distiller’s grains)
 - Fed primarily to beef, some dairy - TMRs
- Condensed distiller’s solubles (CDS)
 - Fed to beef and dairy – TMRs
 - Ontario, Canada – swine liquid feeding system

from Shurson, 2006
DDGS Physical Characteristics

Knott, Shurson and Goihl
- Bulk Density
 - Average = 45.9 kg/hl
 - Range 39.6 – 50.6 kg/hl
- Particle Size
 - Average = 1,282 microns
 - Range 612 – 2,125 microns

Koch
- Bulk Density
 - Average = 48.4 kg/hl
 - Range 45.4 – 51.3 kg/hl
- Particle Size
 - Average = 588 microns
 - Range 387 – 810 microns
Angle of Repose

- Similar to Dehy Alfalfa, corn bran, dry malt
 - Range 40 - 80°
DDGS Nutrient Characteristics

- **Knott, Shurson and Goihl**
 - Protein
 - Average = 26.6
 - Range 24.54 – 28.4
 - Fat
 - Average = 10.0
 - Range 9.2 – 11.6
 - Fiber
 - Average = 6.9
 - Range 5.8 – 9.1

- **Koch**
 - Protein
 - Average = 27.6
 - Range 26.3 – 29.9
 - Fat
 - Average = 9.2
 - Range 8.1 – 10.2
 - Fiber
 - Average = 10.0
 - Range 5.5 – 16.0
DDGS - Handling

- DDGS sets up in rail cars, trucks, containers, barges, (ocean-going vessels ?)
 - DDGS will set up more than once
 - Will set up in silos and bins
- Currently no flow agents have been found that completely correct the flow/handling problems associated with DDGS
 - Some may reduce unloading time
 - from 10 hrs to 5 hrs
- Some reports that “New” generation products improve handling characteristics
Practical issues with DDGS Used in Feed Manufacturing

- Product is Inconsistent – Unpredictable
 - Nutrient content
 - Protein, Fat, Fiber, Moisture, etc.
 - Nutrient digestibility
 - esp. for lysine
 - Physical Characteristics
 - Bulk density, Particle size, Angle of Repose
 - Logistics
 - Multiple producers, brokers/consolidators, shippers
 - Handling
 - Flowability – flat storage is recommended

- Availability
 - Price

- Mycotoxins

- High fiber limits its maximum inclusion level in poultry feed
DDGS and Pellet Production

- Decreased pellet quality
 - Depends on physical and nutrient characteristics of DDGS
 - Fat, fiber, protein, moisture
 - Particle size, density
 - Depends on ingredients
 - Some are complementary
 - Depends on pellet mill operation
 - Conditioning time and temp
 - Die speed – slow down
 - Die specifications
 - Performance ratio
DDGS and Pellet Production

- **Koch**
 - DDGS and Durum wheat midds
 - Increasing DDGS from 0 – 50%
 - A 35% increase in amperage
 - A 41% increase in kilowatts
 - A 15.5% increase in kwh/mt
 - A 3% decrease in pellet quality measured as Pellet Durability Index (PDI)
 - An 11% decrease in pellet bulk density
 - Increased energy use
 - Added $0.11/mt to production costs
 - Decreased pellet quality
 - may cause reduced feed efficiencies
 - Increased transportation costs
DDGS and Pellet Production

Koch

- DDGS and barley malt sprouts
 - Increasing DDGS from 0 – 30%
 - A 40% decrease in amperage
 - A 40% decrease in kilowatts
 - A 47% decrease in kwh/mt
 - A 3% decrease in pellet quality measured as Pellet Durability Index (PDI)
 - A 10% decrease in pellet bulk density
 - Decreased energy use
 - saved $0.65/mt in production costs
 - Decreased pellet quality
 - may cause reduced feed efficiencies
 - Increased transportation costs
DDGS and Pellet Production

- **Koch**
 - DDGS, Durum wheat midds and dry peas
 - DDGS at 20%, peas at 20%, midds at 60%
 - **Compared to 100% midds**
 - 40% increase in amps
 - 42% increase in kw
 - 13% increase in kwh/mt
 - 0.5% increase in PDI
 - **Compared to 60% midds, 40%DDGS**
 - 21% increase in amps
 - 18% increase in kw
 - 7.6% increase in kwh/mt
 - 2% increase in PDI
Koch

- DDGS, Durum wheat midds and dry peas
 - DDGS at 30%, peas at 20%, midds at 50%
 - Compared to 100% midds
 - 43% increase in amps
 - 46% increase in kw
 - 15% increase in kwh/mt
 - 0.8% decrease in PDI
 - Compared to 50% midds, 50% DDGS
 - 6% increase in amps
 - 3% increase in kw
 - 2% increase in PDI
 - 1% decrease in kwh/mt
DDGS and High Shear Conditioning

- Alteration of protein and fiber
 - Operate at greater temperature, pressure and moisture than pellet mills
 - Low bulk density materials (DDGS) do not absorb moisture readily in pellet mill conditioner
 - High natural protein materials (DDGS) becoming “gummy” when moisture addition exceeds 4% and plasticize at temperatures in excess of 63° C
Things to Remember

- DDGS is a by-product of fuel ethanol production
 - Typically corn – but can be from other cereals
- Physical characteristics of DDGS are dissimilar
 - Bulk density, particle size and angle of repose are not uniform
- Nutrient content of DDGS depends on the grain source
 - Changes nutrient value

- The above alter performance of pellet mills and other feed manufacturing equipment
Thank You
Die – Roller interaction

- Feed on the die face must be compressed and extruded through the die holes during successive rotations

 - Excess moisture (> 17%) in the feed will cause the roll to slip
 - Resist compression
 - Materials high in natural protein and low bulk density are difficult to pellet
 - DDGS become “gummy” with the addition of moisture > 4%
 - DDGS do not absorb steam well
In order to make pellets, all forces must be balanced.

- Moisture, fat, fiber, and protein play a crucial role in pellet production.
 - If the slip-resisting force is greater than the roll force, the material will not compress.
 - Caused by moisture, fat, and protein.
 - If the flow resisting force is greater than the roll force, the material will not extrude.
 - Caused by fiber and particle size.
Feed material is compressed into the die hole and extruded through the effective length.

- Factors that determine Pellet Quality
 - Performance ratio (d/L)
 - Compression ratio (D/d)