Energy From Agriculture:
New Technologies, Innovative Programs & Success Stories

December 14-15, 2005 St. Louis, Missouri
Feed and Alternative Uses for DDGS

Dr. Jerry Shurson and Dr. Sally Noll
Department of Animal Science
University of Minnesota
Rapid Growth of the U.S. Ethanol Industry

• 2004
 – 80 fuel ethanol plants
 • 3.640 billion gallons of ethanol
 • 6.928 million metric tonnes DDGS

• 2005 and 2006
 – 92 ethanol plants in production
 – 23 ethanol plants under construction
 • 5.6 billion gallons of ethanol
 • 10.658 million metric tonnes DDGS
Livestock and Poultry Feed
Use of DDGS in the U.S.

Estimate 2001

- Dairy: 36%
- Beef: 4%
- Poultry/Swine: 60%

Estimate 2002

- Dairy: 45%
- Beef: 15%
- Poultry/Swine: 40%

Estimate 2003

- Dairy: 39%
- Beef: 11%
- Poultry/Swine: 46%

Estimate 2004

- Dairy: 37%
- Beef: 3%
- Poultry/Swine: 44%
Types of Distiller’s By-Products from Dry-Grind Ethanol Plants

- Wet distiller’s grains
 - Primarily beef, some dairy

- Dry distiller’s grains
 - Beef and dairy

- Wet distiller’s grains with solubles
 - Beef and dairy

- Dried distiller’s grains with solubles
 - Dairy, swine, poultry, some beef

- Modified wet cake (blend of wet and dry distiller’s grains)
 - Primarily beef, some dairy

- Condensed distiller’s solubles
 - Beef and dairy
 - Ontario, Canada - swine liquid feeding systems
Averages, Coefficients of Variation, and Ranges of Selected Nutrients Among 32 U.S. DDGS Sources (100% Dry Matter Basis)

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Average</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter, %</td>
<td>89.3</td>
<td>87.3 – 92.4</td>
</tr>
<tr>
<td>Crude protein, %</td>
<td>30.9 (4.7)</td>
<td>28.7 – 32.9</td>
</tr>
<tr>
<td>Crude fat, %</td>
<td>10.7 (16.4)</td>
<td>8.8 – 12.4</td>
</tr>
<tr>
<td>Crude fiber, %</td>
<td>7.2 (18.0)</td>
<td>5.4 – 10.4</td>
</tr>
<tr>
<td>Ash, %</td>
<td>6.0 (26.6)</td>
<td>3.0 – 9.8</td>
</tr>
<tr>
<td>Swine ME, kcal/kg</td>
<td>3810 (3.5)</td>
<td>3504 – 4048</td>
</tr>
<tr>
<td>Lysine, %</td>
<td>0.90 (11.4)</td>
<td>0.61 – 1.06</td>
</tr>
<tr>
<td>Phosphorus, %</td>
<td>0.75 (19.4)</td>
<td>0.42 – 0.99</td>
</tr>
</tbody>
</table>
• 27.6 ____ Distillers Dried Grains with Solubles is the product obtained after the removal of ethyl alcohol by distillation from the yeast fermentation of a grain or a grain mixture by condensing and drying at least $\frac{3}{4}$ of the solids of the resultant whole stillage and drying it by methods employed in the grain distilling industry. The predominating grain shall be declared as the first word in the name.
Comparison of the Nutrient Content of Corn Distiller’s Grains and Corn Condensed Distiller’s Solubles
Comparison of Nutrient Composition of Golden DDGS to Other “DDGS Sources” (100% Dry Matter Basis)

<table>
<thead>
<tr>
<th></th>
<th>Golden Corn DDGS</th>
<th>“DDGS”</th>
<th>High Fat DDGS</th>
<th>Partial De-germed DDGS</th>
<th>Whiskey DDGS</th>
<th>Pelleted DDGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein, %</td>
<td>31.8</td>
<td>29.3</td>
<td>31.6</td>
<td>30.1</td>
<td>29.9</td>
<td>27.0</td>
</tr>
<tr>
<td>Fat, %</td>
<td>11.3</td>
<td>3.5</td>
<td>15.3</td>
<td>8.9</td>
<td>8.8</td>
<td>9.00</td>
</tr>
<tr>
<td>Crude fiber, %</td>
<td>6.3</td>
<td>7.9</td>
<td>No data</td>
<td>7.8</td>
<td>10.6</td>
<td>15.10</td>
</tr>
<tr>
<td>ADF, %</td>
<td>12.4</td>
<td>11.8</td>
<td>17.9</td>
<td>21.0</td>
<td>20.2</td>
<td>No data</td>
</tr>
<tr>
<td>Ash, %</td>
<td>6.9</td>
<td>5.3</td>
<td>4.6</td>
<td>7.3</td>
<td>3.7</td>
<td>4.28</td>
</tr>
<tr>
<td>DE, kcal/kg*</td>
<td>4053</td>
<td>3808</td>
<td>No data</td>
<td>3796</td>
<td>No data</td>
<td>No data</td>
</tr>
<tr>
<td>ME, kcal/kg*</td>
<td>3781</td>
<td>3577</td>
<td>No data</td>
<td>3560</td>
<td>3789</td>
<td>No data</td>
</tr>
<tr>
<td>Lys, %</td>
<td>0.92</td>
<td>0.61</td>
<td>0.90</td>
<td>0.83</td>
<td>0.99</td>
<td>No data</td>
</tr>
<tr>
<td>Met, %</td>
<td>0.62</td>
<td>0.54</td>
<td>0.54</td>
<td>0.66</td>
<td>0.61</td>
<td>No data</td>
</tr>
<tr>
<td>Thr, %</td>
<td>1.17</td>
<td>1.01</td>
<td>1.04</td>
<td>1.13</td>
<td>1.10</td>
<td>No data</td>
</tr>
<tr>
<td>Trp, %</td>
<td>0.25</td>
<td>0.18</td>
<td>0.23</td>
<td>0.25</td>
<td>0.27</td>
<td>No data</td>
</tr>
<tr>
<td>Ca, %</td>
<td>0.07</td>
<td>0.12</td>
<td>0.06</td>
<td>0.51</td>
<td>0.04</td>
<td>0.17</td>
</tr>
<tr>
<td>P, %</td>
<td>0.77</td>
<td>0.78</td>
<td>0.89</td>
<td>0.68</td>
<td>0.57</td>
<td>0.62</td>
</tr>
</tbody>
</table>

*Calculated energy values for swine.
Example Categories of Distiller’s By-Products

- Dakota Gold
- Solulac
- Corn DDGS > 75% solubles added to grains
- Corn/Wheat Blends
- Corn Condensed Distiller’s Solubles
- Corn/Sorghum Blends
- Whiskey Distillery DDGS
- DDGS/Soy Hull Blends
- Wet Distiller’s Grains
- High ADF and Ca, Reduced Energy DDGS for Monogastrics
- High Protein DDGS
- Golden Lix
- Spray Dried Distiller’s Solubles

Dried Distiller’s Grains
- Corn DDGS < 75% solubles added to grains
- Corn DDGS

Corn DDGS

Distiller’s By-Products
DDGS Varies Nutrient Content, Digestibility, Color, and Particle Size Among U.S. Sources
Color Extremes of DDGS

Lower Quality, Less Digestible DDGS

High Quality, Highly Digestible DDGS
Fig. 1. Regression of digestible lys (%) and color (L*, b*)

Source: Dr. Sally Noll (2003)
<table>
<thead>
<tr>
<th>Procedure</th>
<th>Moisture (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure 1</td>
<td>12.69</td>
</tr>
<tr>
<td>Procedure 2</td>
<td>10.48</td>
</tr>
<tr>
<td>Procedure 3</td>
<td>10.09</td>
</tr>
<tr>
<td>Procedure 4</td>
<td>10.64</td>
</tr>
<tr>
<td>Procedure 5</td>
<td>13.30</td>
</tr>
<tr>
<td>Procedure 6</td>
<td>12.60</td>
</tr>
</tbody>
</table>
Use of DDGS in Dairy Rations
Benefits and Limitations for Lactating Dairy Cows

Benefits

• More protein and energy than corn
• Feed at up to 20% of ration dry matter
• Highly digestible fiber source
 – Fewer digestive upsets
 – Can be a partial forage replacement
• “Golden” DDGS gives best performance
• Highly palatable

Limitations

• Low protein (lysine) quality
 – add other supplements high in lysine
• Manure P excretion increases at high feeding levels
• No effect on milk fat if adequate forage in the ration
Use of DDGS in Beef Rations
Benefits and Limitations for Finishing Feedlot Cattle

Benefits

- More protein and same energy as corn
- Feed up to 40% of ration dry matter to replace corn
 - Excess protein and P
- Highly digestible fiber source
 - Fewer digestive upsets
- “Golden” DDGS gives best performance
- No effect on carcass yield, quality, or eating characteristics of beef

Limitations

- Need to supplement calcium to achieve proper Ca:P ratio
 - Avoid urinary calculi
- Manure N and P excretion increases at high feeding levels
- Monitor sulfur level of water and diet (< 0.4% ration DM)
 - Avoid polioencephalomalacia
Use of DDGS in Swine Diets
Benefits and Limitations for Swine

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Energy value = corn</td>
<td>• Low protein (lysine) quality</td>
</tr>
<tr>
<td>• High available P</td>
<td>- add other supplements high in lys and trp</td>
</tr>
<tr>
<td>- Reduce diet P supplementation</td>
<td>• Manure N excretion increases</td>
</tr>
<tr>
<td>- Reduce manure P excretion</td>
<td>• Belly firmness and pork fat quality issues when > 20% in the diet</td>
</tr>
<tr>
<td>• Commonly fed at 10% of diet</td>
<td>• Mycotoxin free grain should be used to produce ethanol and DDGS</td>
</tr>
<tr>
<td>- Higher levels can be used if amino acids are supplemented</td>
<td>• Short-term feed intake may be reduced when feeding high DDGS diets to sows</td>
</tr>
<tr>
<td>• Only “golden” DDGS should be used</td>
<td></td>
</tr>
<tr>
<td>- High amino acid digestibility</td>
<td></td>
</tr>
<tr>
<td>• Appears to reduce gut health problems due to ileitis</td>
<td></td>
</tr>
<tr>
<td>• May increase litter size weaned when fed at high levels to sows</td>
<td></td>
</tr>
</tbody>
</table>
Use of Corn DDGS for Poultry
Benefits

- Good energy and amino acid source when limited to < 15% of the diet
- Source of highly available P
 - Reduce manure P
- May improve egg yolk and skin color (xanthophyll)
- Source of “unidentified growth factors”?
- “Golden” DDGS gives best performance
- Highly palatable

Limitations

- Energy value ~ 84% of corn
- Low protein quality
 - add other supplements high in lys, arg, trp
- Sources high in sodium may increase litter moisture if adjustments to dietary salt levels are not made
Relative Value of DDGS Differs Depending on Species

Assumptions:
- Corn: $2.00 / bu
- SBM: $175.00 / ton
- Urea: $360.00 / ton
- Non-ruminant diets corn/SBM
- Ruminant diets typical diets with competing by-products.

Feed Costs:
<table>
<thead>
<tr>
<th>Feed</th>
<th>Dollars/ ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy Lactation</td>
<td>$114.24</td>
</tr>
<tr>
<td>Poultry Finisher</td>
<td>$100.09</td>
</tr>
<tr>
<td>Layer Diet</td>
<td>$104.66</td>
</tr>
<tr>
<td>Swine G-F Diet</td>
<td>$96.34</td>
</tr>
<tr>
<td>Beef Feedlot</td>
<td>$108.00</td>
</tr>
</tbody>
</table>

Source: Tilstra, Land O’ Lakes
New Distiller’s Grains By-Products

• Examples of modified processes
 – Use of new enzyme technology to increase DDGS protein
 – Removal of bran and/or germ prior to fermentation
 – Removal of phosphorus
Comparison of Nutrient Content of Dakota Gold DDGS with High Protein Dakota Gold (100% DM Basis)
Comparison of Amino Acid Content of Dakota Gold DDGS with High Protein Dakota Gold (100% DM Basis)
Comparison of Mineral Content of Dakota Gold DDGS with High Protein Dakota Gold (100% DM Basis)
Opportunity Costs of Corn By-Products in Swine Diets

<table>
<thead>
<tr>
<th></th>
<th>DDGS Nutrient Spec. 1</th>
<th>DDGS Nutrient Spec. 2</th>
<th>High Protein DDGS</th>
<th>Corn Protein Conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swine</td>
<td>$80.00</td>
<td>$78.00</td>
<td>$51.00</td>
<td>$61.60</td>
</tr>
</tbody>
</table>
We have developed a DDGS web site featuring:

* nutrient profiles and photos of DDGS samples
* research summaries
 - swine, poultry, dairy, & beef
 - DDGS quality
* presentations given
* links to other DDGS related web sites
* international audiences