Impact of highly oxidized dried distillers grains with solubles (DDGS) at increasing dietary vitamin E levels on nutrient digestibility and DE and ME content in diets for growing pigs

R. Song1, C. Chen1, L. J. Johnston2, B. J. Kerr3, T. E. Weber3, and G. C. Shurson1

1University of Minnesota, St. Paul, MN
2West Central Research and Outreach Center, Morris, MN
3USDA-ARS-NLAE, Ames, IA

A study was conducted to evaluate the effects of feeding diets containing highly oxidized DDGS with 3 levels of vitamin E on DE and ME content, and apparent total tract digestibility (ATTD) of energy, N, C and S in diets for growing pigs. The DDGS source used in this study contained the highest thiobarbituric acid reactive substances (TBARS) value and peroxide value (5.2 ng/mg oil and 84.1 meq/kg oil, respectively) among 30 other DDGS sources (mean values = 1.8 ng/mg oil and 11.5 meq/kg oil, respectively). Growing barrows (n=54) were assigned randomly to one of 6 dietary treatments in a 2 x 3 factorial design. Pigs were fed corn-soybean meal (CON) or diets containing 30% DDGS with 3 levels of vitamin E: none supplemented, NRC (11 IU/kg), or 10X NRC (110 IU/kg). Pigs were housed individually in metabolism cages for a 5-d adaptation period followed by a 3-d total collection of feces and urine. Feed, feces and urine were analyzed for GE, N, C and S to calculate the corresponding ATTD, daily balance, as well as DE and ME content of diets. The DE and ME content of DDGS diets were lower (P < 0.05) than CON (3,285 vs. 3,347 and 3,180 vs. 3,247 kcal/kg, as-fed basis, respectively). Dietary inclusion of 30% DDGS reduced dietary ATTD of GE (84.3 vs. 89.2%, P < 0.001), N (84.1 vs. 88.7%, P < 0.001) and C (85.0 vs. 90.0%, P < 0.001), but improved ATTD of S (86.8 vs. 84.6%, P < 0.001) compared to CON. Nitrogen absorbed tended to be lower (P < 0.10), and C absorbed and retained were lower (P < 0.05) in DDGS diets than CON. Intake, fecal and urinary excretion of S, and S absorbed and retained were higher (P < 0.01) in DDGS diets than CON. There was no significant interaction between dietary DDGS and vitamin E level, or effects of vitamin E on nutrient digestibility or dietary energy value in this study. In conclusion, feeding diets containing 30% highly oxidized DDGS decreased the ATTD of GE, N and C, but improved the ATTD of S in diets. Supplementation of vitamin E in the diet did not counteract the negative effects of DDGS on nutrient digestibility.

Key words: ATTD, DDGS, pig, vitamin E