The Use of Distiller's Grains By-products in Livestock and Poultry Diets

Dr. Jerry Shurson Department of Animal Science University of Minnesota

The Keys To Increased DDGS Use Are:

- Understanding the value and limitations of
 DDGS in livestock and poultry feeds
- □ Overcoming the challenges

DDGS Nutrition

- DDGS is a "package of nutrients"
 - Mid-protein ingredient
 - Like corn, has poor protein quality (amino acid balance) for swine and poultry
 - High fat
 - High available P
 - □ valuable for monogastrics
 - □ can result in overfeeding P for ruminants

The Use of DDGS in Dairy Rations

Benefits and Limitations for Lactating Dairy Cows

Benefits

- More protein and energy than corn
- □ Feed at up to 20% of ration dry matter
- Highly digestible fiber source
 - Fewer digestive upsets
 - Can be a partial forage replacement
- Golden" DDGS gives best performance
- Highly palatable

Limitations

- Low protein (lysine) quality
 - add other supplements high in lysine
- Manure P excretion increases at high feeding levels
- No effect on milk fat if adequate forage in the ration

Benefits and Limitations for Finishing Feedlot Cattle

Benefits

- More protein and energy than corn
- □ Feed up to 40% of ration dry matter to replace corn
 - Feed excess protein and P
- □ Highly digestible fiber source
 - Fewer digestive upsets
- □ "Golden" DDGS gives best performance
- No effect on carcass yield, quality, or eating characteristics of beef

Limitations

- Need to supplement calcium to achieve proper Ca:P ratio
 - Avoid urinary calculi
- Manure N and P excretion increases at high feeding levels
- □ Monitor sulfur level of water and diet (< 0.4% ration DM)
 - Avoid polioencephalmalacia

Feeding Value of DDGS for Swine

Benefits and Limitations of Feeding DDGS Diets to Swine

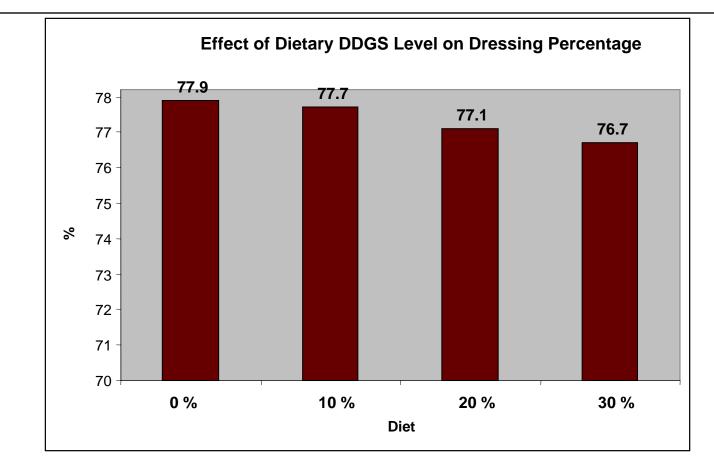
Benefits

- $\Box \qquad \text{Energy value} = \text{corn}$
- □ High available P
 - Reduce diet P supplementation
 - May reduce manure P excretion
- Partially replaces some corn, soybean meal, and dicalcium phosphate and reduces diet cost
- □ Commonly fed at 10% of diet
 - Higher levels can be used if amino acids are supplemented
- Only "golden" DDGS should be used
 - High amino acid digestibility
- □ Appears to reduce gut health problems due to ileitis
- May increase litter size weaned when fed at high levels to sows
- □ Increases pig weight gain when fed to sows during lactation

Limitations

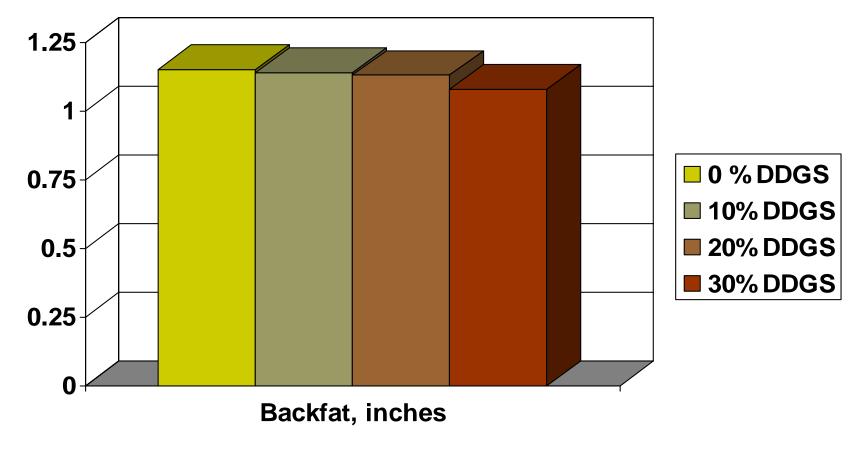
- □ Low protein (lysine) quality
 - add other supplements high in lysine and tryptophan
- □ Variability in nutrient content and digestibility among sources
- □ Manure N excretion increases
- Belly firmness and pork fat quality may be reduced at high dietary inclusion rates
- □ Fine particle size can contribute to flowability problems in bins and feeders
- Difficult to pellet and maintain throughput of pellet mills
- Mycotoxin free grain should be used to produce ethanol and DDGS
- □ Short-term feed intake may be reduced when feeding high DDGS diets to sows

Effects of Formulating G-F Diets Containing Increasing Levels of DDGS on a Digestible Amino Acid Basis on Growth Performance and Pork Quality

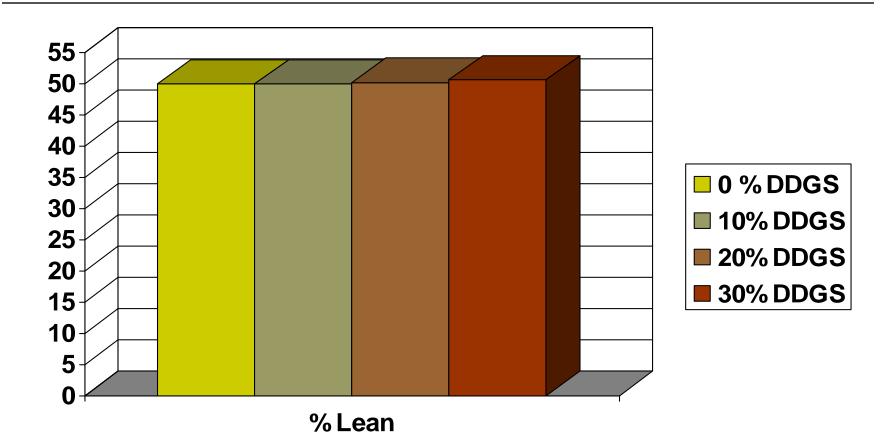

Effect of Formulating G-F Diets on a Digestible Amino Acid Basis, with Increasing Levels of DDGS, on Overall Growth Performance

	0% DDGS	10% DDGS	20% DDGS	30% DDGS
Initial wt., lbs	49.7	50.3	49.7	49.7
Final wt., lbs	252	253	251	250
ADG, lbs/d	2.03	2.03	2.03	2.01
ADFI, lbs/d ^a	5.66	5.62	5.49	5.42
F/G ^a	2.79	2.76	2.71	2.70

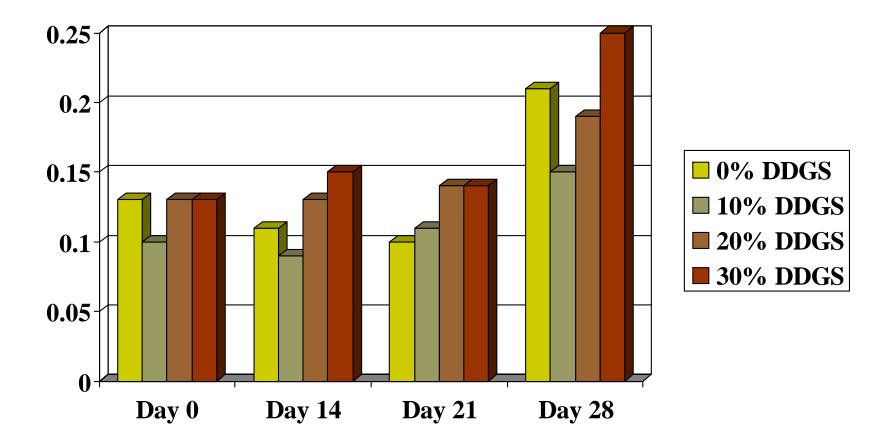
^a Linear effect of DDGS level


Data from 64 pens, 16 pens/treatment (Xu et al., 2007)

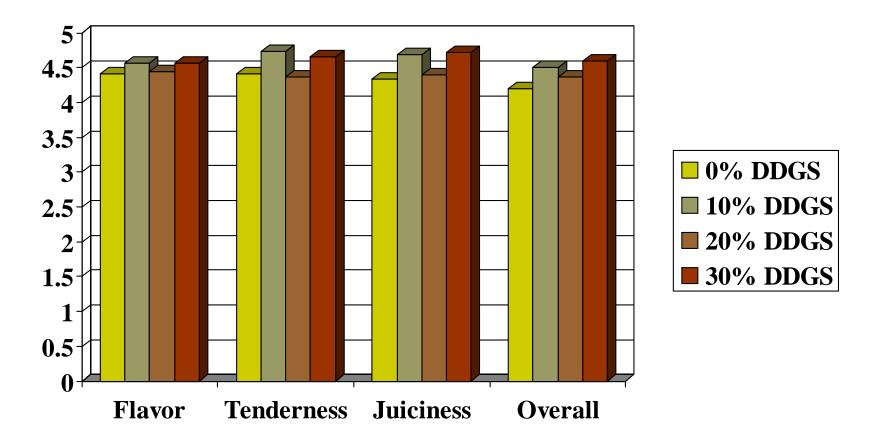
Adding Increasing Levels of DDGS to G-F Diets Slightly Reduces Carcass Yield


Xu et al. (2007) Linear effect (P < 0.01)

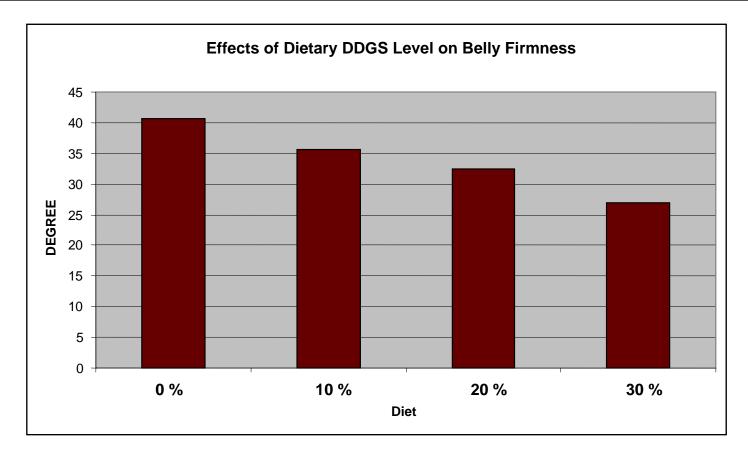
Effects of Dietary DDGS Level on Last Rib Backfat


Xu et al. (2007) 30% DDGS tended to be lower than 0% DDGS (P = 0.09)

Effects of Dietary DDGS Level on % Carcass Lean


Xu et al. (2007) 30% DDGS tended to be higher than 0% DDGS (P = 0.11)

Effects of Increasing Dietary DDGS Level on Fat Stability of Pork Loins (TBARS, mg malonaldehyde/kg)


No significant differences among dietary treatments.

Effects of Increasing Dietary DDGS Level on Eating Characteristics of Pork Loins

No significant differences among dietary treatments.

Adding Increasing Levels of DDGS to G-F Diets Linearly Reduces Belly Firmness

Xu et al. (2007)

Summary of Effects of Feeding DDGS on Pork Quality

- Diets containing 10% DDGS will provide the same ADG as pigs fed typical corn-SBM diets
 - Diets formulated on a total lysine basis
 - Diets formulated on a digestible amino acid basis
- □ If >10% DDGS is added to G-F diets, diets should be formulated on a digestible amino acid basis to achieve good performance.
- Feed intake may decline with increasing levels of DDGS in the diet
 - Unclear why different studies show different feed intake responses
 - Diets containing >10% DDGS may result in improved feed efficiency

Summary of Effects of Feeding DDGS on Pork Quality

- □ Carcass yield is slightly linearly reduced with increasing dietary DDGS levels
 - No difference in % lean
 - No difference in backfat
 - May be due to increased viscera weight from increased dietary fiber?
- Backfat thickness is unaffected, and may be slightly reduced, with increasing dietary levels of DDGS
- Bellies will be less firm as higher dietary levels of DDGS are fed
- Belly thickness may or may not be affected by increasing dietary DDGS levels
- □ No concern about reduced shelf life and fat oxidation in loins under typical retail storage conditions for at least 28 days.
- □ Muscle quality and eating characteristics are generally unaffected by feeding diets containing increasing levels of DDGS

Use of DDGS in Poultry Diets

Benefits and Limitations for Poultry

Benefits

- □ Good energy and amino acid source when limited to < 15% of the diet
- □ Source of highly available P
 - Reduce manure P
- May improve egg yolk and skin color (xanthophyll)
- □ Source of "unidentified growth factors"?
- Golden" DDGS gives best performance
- □ Highly palatable

Limitations

- □ Energy value ~ 84% of corn
- □ Low protein quality
 - add other supplements high in lys, arg, trp
- Sources high in sodium may increase litter moisture if adjustments to dietary salt levels are not made

Relative Value of DDGS Differs Depending on Species

		Feed	Dollars/ ton	
Assumptio	ons:	Dairy Lactation	\$114.24	
•Corn	\$2.00 / bu	Poultry Finisher	\$100.09	
•SBM	\$175.00 / ton	I outry Finisher	\$100.09	
•Urea	\$360.00 / ton	Layer Diet	\$104.66	
•Non-ruminant diets corn/SBM		Swine G-F Diet	\$96.34	
 Ruminant diets typical diets with competing by-products. 		Beef Feedlot	\$108.00	

Source: Tilstra, Land O' Lakes

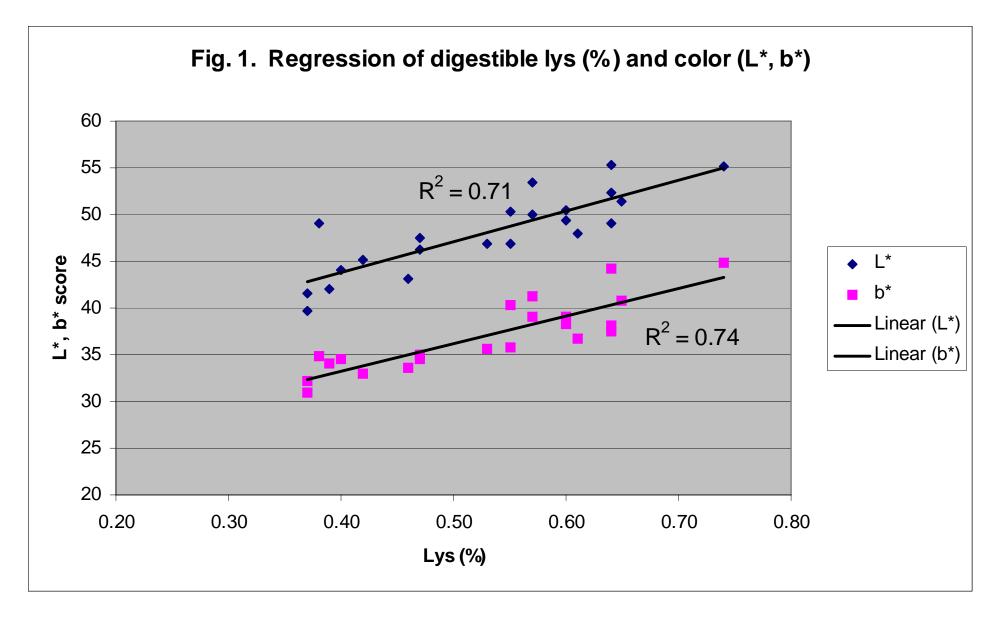
Nutritionists make the decisions on feed ingredient use

- Decisions are based on:
 - Price relative to competing ingredients
 - □ Corn
 - □ Soybean meal
 - Dicalcium phosphate
 - Consistency of supply
 - Ability to source and manage quality
 - Physical characteristics
 - □ Particle size and flowability
 - □ Bulk density
 - □ Ability to pellet
 - Risk of mycotoxins
 - Product consistency/variability

What Are the Issues/Challenges?

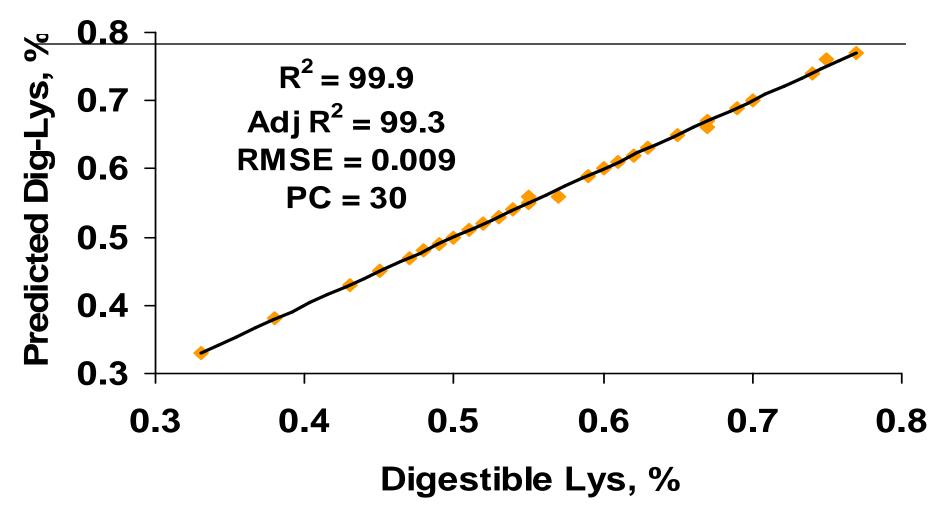
- 1. By-product variability
 - a. nutrient content
 - b. nutrient digestibility
 - c. physical characteristics
- 2. Feeding value of new corn distiller's by-products
- 3. Lack of a quality grading system
 - a. difficult sourcing to obtain desired quality and price
- 4. Lack of standardized testing procedures
- 5. Need for quality management and certification
- 6. Need a high degree of
 - a. research
 - b. education
 - c. technical support
- 7. Presence of quality contaminants?

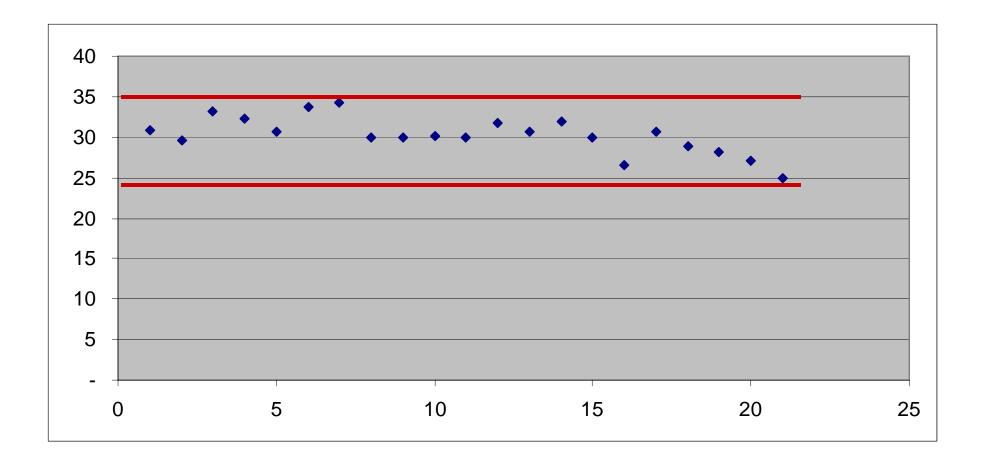
1. By-Product Variability


- Nutrient content
- Nutrient digestibility
 - Color (amino acid digestibility)
- Physical characteristics
 - Particle size
 - Bulk density

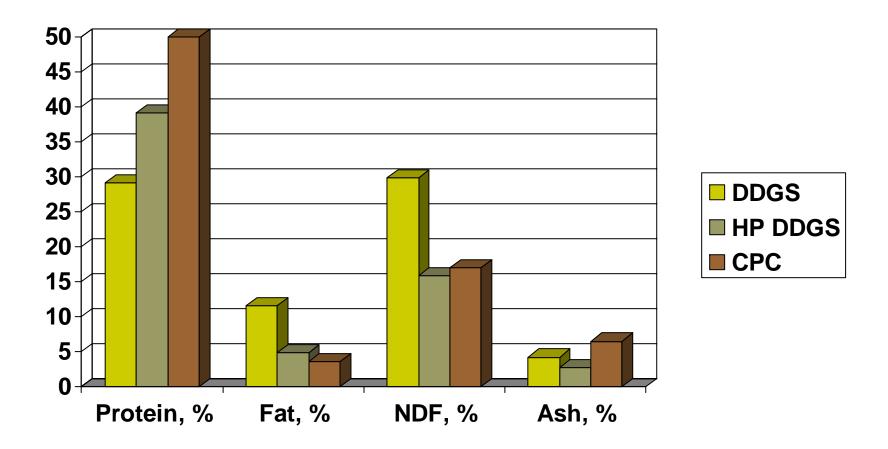
Averages, Coefficients of Variation, and Ranges of Selected Nutrients Among 32 U.S. DDGS Sources (100% Dry Matter Basis)

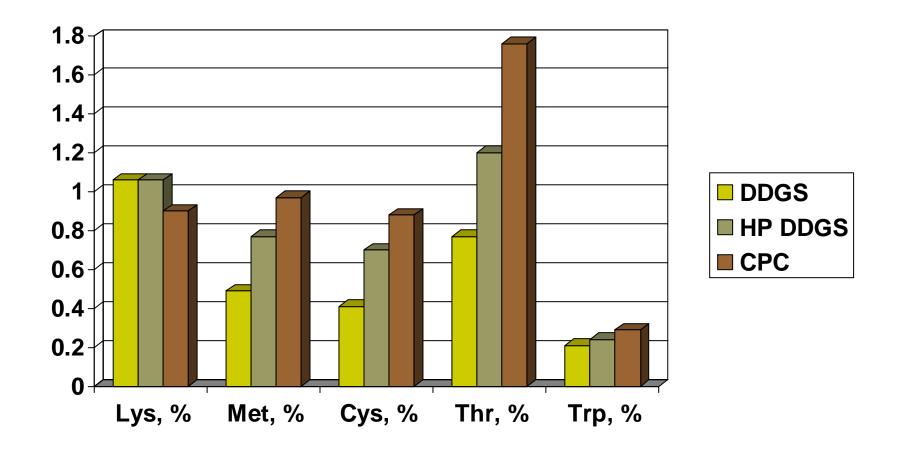
Nutrient	Average	Range	
Dry matter, %	89.3	87.3 - 92.4	
Crude protein, %	30.9 (4.7)	28.7 - 32.9	
Crude fat, %	10.7 (16.4)	8.8 - 12.4	
Crude fiber, %	7.2 (18.0)	5.4 - 10.4	
Ash, %	6.0 (26.6)	3.0 - 9.8	
Swine ME, kcal/kg	3810 (3.5)	3504 - 4048	
Lysine, %	0.90 (11.4)	0.61 – 1.06	
Phosphorus, %	0.75 (19.4)	0.42 - 0.99	


DDGS Varies Nutrient Content and Digestibility, Color, and Particle Size Among U.S. Sources

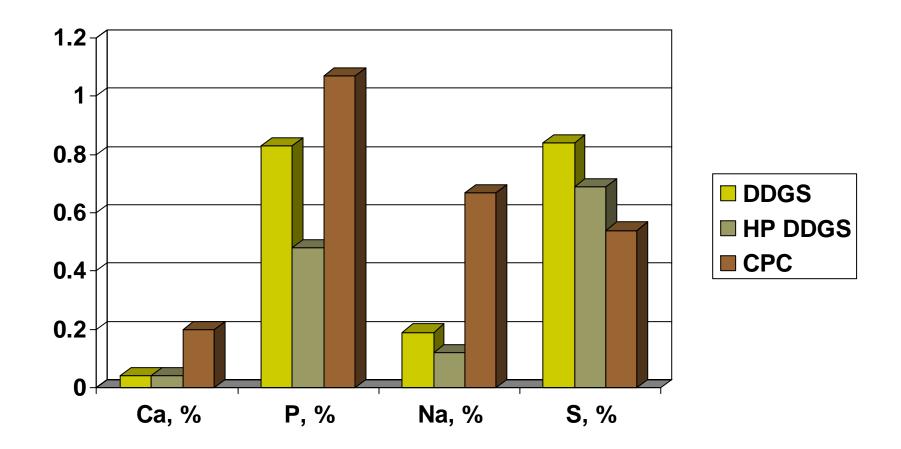

Source: Dr. Sally Noll (2003)

Prediction of Digestible Lysine from Front Face Fluorescence in DDGS


Variation in Particle Size Among DDGS Samples Representing 25 U.S. Ethanol Plants 1/05


Variation in Bulk Density (Lbs/Cubic Ft.) Among DDGS Samples Representing 25 U.S. Ethanol Plants 1/05

2. Understanding new corn distiller's by-products


Comparison of Nutrient Content of Dakota Gold DDGS with High Protein Dakota Gold and Corn Protein Concentrate (100% DM Basis)

Comparison of Amino Acid Content of Dakota Gold DDGS with High Protein Dakota Gold and Corn Protein Concentrate (100% DM Basis)

Comparison of Mineral Content of Dakota Gold DDGS with High Protein Dakota Gold and Corn Protein Concentrate (100% DM Basis)

Opportunity Costs of Corn By-Products in Swine and Poultry Diets

	DDGS Spec. 1	DDGS Spec. 2	HP DDGS	CPC
Swine	\$80.00	\$78.00	\$51.00	\$61.60
Poultry	\$80.00	\$75.20	\$53.00	\$43.00

Product Flowability

- Particle size is sometimes too fine
- Difficult and costly to pellet
- Minimal cooling or "curing" time before loading
 - Extensive damage to trucks and rail cars

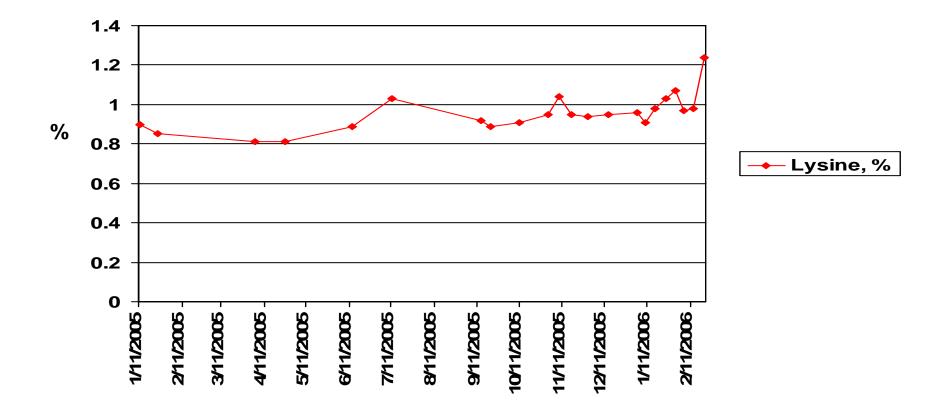
3. Lack of a Quality Grading System

- Difficult for buyers to differentiate quality and price
- Can be as much as \$20-\$30/ton price differential due to quality in the market
- "What you want isn't always what you get"

Some of the Nutrient Variability is Due to the Use of Different Approved Laboratory Testing Procedures

4. Lack of Standardized Testing Procedures

- Different labs may use different procedures
 variable results
- □ No referee laboratories have been established


Variability of Moisture Content from One DDGS Source Using Approved AOAC Lab Procedures

	Moisture (%)
Procedure 1	12.69
Procedure 2	10.48
Procedure 3	10.09
Procedure 4	10.64
Procedure 5	13.30
Procedure 6	12.60

5. Need for Quality Management and Certification

- Paradigm shift in parts of the ethanol industry toward improved DDGS quality and consistency
 - Implementation of DDGS Quality Assurance Programs
 - Many commercial feed mills are ISO 9000:2001 and HAACP Certified
 - □ EU International Feed Ingredient Standard
 - GMP Certification
 - Transparency of information about the by-products produced
 - Aggressive sampling and nutrient analysis

Lysine Monitoring - Big River Resources 1/11/05 – 3/6/06 (100% DM Basis)

6. Need a High Degree of Research, Education, and Technical Support

- Additional research is needed to improve DDGS acceptance in the feed industry
- High degree of education and technical support is required in the market place

- □ Antimicrobials in ethanol production
 - Used to control bacterial (lactobacillus) contamination
 - Can increase ethanol yield by as much as 25%
 - Which ones are used?
 - □ Virginiamycin (0.25 to 2.0 ppm)
 - □ Penicillin (1 g/1000 liters)
 - Unique compared to forms used in animal feeds

□ Antimicrobials in ethanol production

Virginiamycin

- Does not affect yeast productivity
- Does not remain in ethanol after distillation
- □ Is destroyed at temperatures > 93° C
- \square Dryer temperatures range from 93 to 232° C
- Is destroyed and there are no detectable residues in DDGS

□ Antimicrobials in ethanol production

Penicillin

- □ Most stable at pH 6.0 to 6.4
- $\Box \quad \text{Half life of 14 days when in solution at 24}^{\circ} \text{ C}$
- □ Easily inactivated by primary alcohols and some sugars
- □ At pH of 4.5 or 9.0, rate of inactivation increases 10-fold
- □ At pH 3.2 or 10.5, rate of inactivation increases 100-fold
- Completely degraded at pH 3 and a temperature of 37° C for 30 minutes
- □ No residues in DDGS

□ Mycotoxins

- If contaminated corn is used, concentrations of mycotoxins are concentrated 3x in DDGS
- ELISA tests for mycotoxins may give false positive results
- □ Sulfur levels
 - Range from 0.31 to 1.93%
 - Variation partially due to use of sulfuric acid to clean fermenters

U of M DDGS Web Site www.ddgs.umn.edu

- We have developed a DDGS web site featuring:
- * nutrient profiles and photos of DDGS samples
- * research summaries
 - swine, poultry, dairy, & beef
 - DDGS quality
- * presentations given
- * links to other DDGS related web sites
- * international audiences