

ltem	% of DM	
Crude protein	28 to 36	
RUP, % of CP	47 to 63	High-bypass po with >80% SI di
NEI, Mcal/kg	2.20	
Fat	8.2 to 11.7	•
ADF	19 to 24	
NDF	38 to 44	
Са	0.10 to 0.1	5
P	0.43 to 0.8	3

DDGS Research in Ruminants

NCR-88 Beef Growing-Finishing Systems

Summarized studies in 1984 (NCR No. 297)

✓ Characterization of fermentation by-products

- Higher protein concentration than corn
- Similar or greater RUP
- Similar energy concentration as corn

✓ DDGS as a protein source

- Replacement for other protein sources
 - » When combined with urea of equal value as SBM
- As a bypass source
 - » Fortified with urea > urea alone
- » More efficient protein source when combined with urea than SBM

✓ DDGS as an energy source

 "if abundant supplies of wet distillers' grains should become available—as a result, for example, of increased production of fuel alcohol—this by-product could be used as an energy source in livestock feeds."

> DICostanzo DGS Shortcourse Oct 28 2004

Beef Feedlot Research

Focus of most of the DDGS and WDGS work

- No complications with composition of gain
- Typically require lower fiber and CP concentrations

Variable

- Crude protein sources
- Crude protein concentrations
- Age and/or weight at feedlot entry

DDGS Shortcourse Oct. 28, 2004

