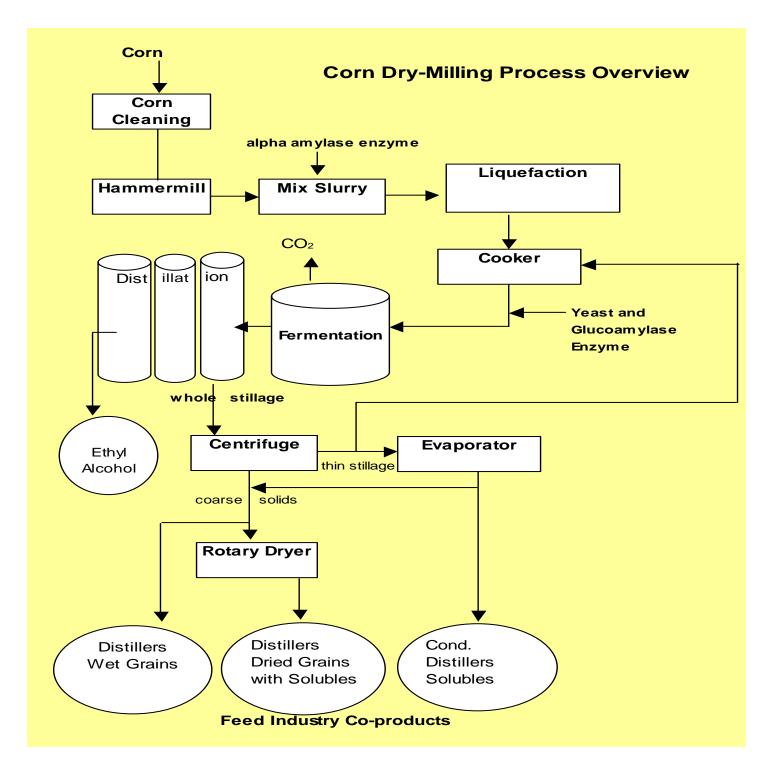
Nutritional Characteristics and Feeding Recommendations for Corn Distiller's By-Products

Dr. Jerry Shurson Professor Dept. of Animal Science University of Minnesota

What is DDGS?

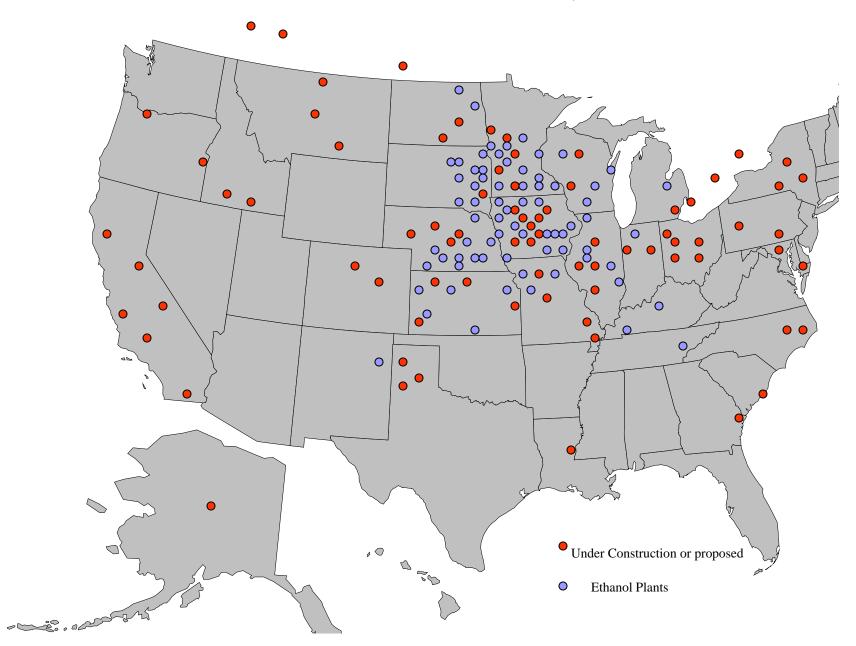

- By-product of the dry-milling ethanol industry
- Nutrient composition is different between dry-mill, wet-mill and beverage alcohol by-products
 - DDGS fuel ethanol
 - □ DDGS whiskey distilleries
 - □ Corn gluten feed wet mill
 - □ Corn gluten meal wet mill
 - □ Brewer's dried grains beer manufacturing
- Nutrient content depends on the grain source used
 - Corn DDGS Midwestern US
 - Wheat DDGS Canada
 - Sorghum (milo) DDGS Great Plains US
 - Barley DDGS

Comparison of Nutrient Composition (Dry Matter Basis) of "New Generation" DDGS to Corn Gluten Feed, Corn Gluten Meal, Corn Germ Meal, and Brewer's Dried Grains

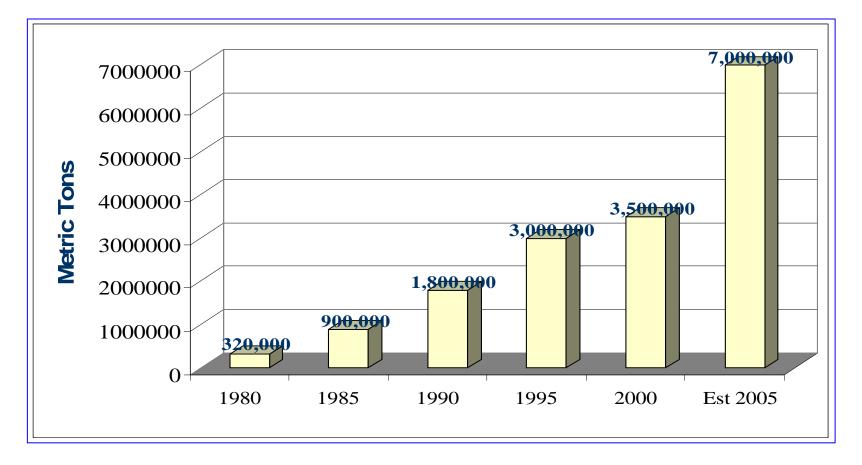
	"New Generation" Corn DDGS (UM)	Corn Gluten Feed (NRC)	Corn Gluten Meal (NRC)	Corn Germ Meal (Feedstuffs)	Brewer's Dried Grains (NRC)	
Protein, %	30.6	23.9	66.9	22.2	28.8	
Fat, %	10.7	3.3	3.2	1.1	7.9	
NDF, %	43.6	37.0	9.7	No data	52.9	
DE, kcal/kg	4011	3322	4694	No data	2283	
ME, kcal/kg	3827	2894	4256	3222	2130	
Lys, %	0.83	0.70	1.13	1.00	1.17	
Met, %	0.55	0.39	1.59	0.67	0.49	
Thr, %	1.13	0.82	2.31	1.22	1.03	
Trp, %	0.24	0.08	0.34	0.22	0.28	
Ca, %	0.06	0.24	0.06	0.33	0.35	
Available P, %	0.80	0.54	0.08	0.17	0.21	

By-Products from Dry-Mill Ethanol Plants

- Distiller's grains
 - □ Wet 30 to 35% DM
 - □ Dry 90 to 92% DM
- Condensed distiller's solubles
 - □ Wet 30 to 32% DM (variable)
 - □ Dry 99% DM (new spray drying process developed at U of M)
- Distiller's dried grains with solubles
 - □ Wet 30 to 35% DM
 - □ Dried 88 to 90% DM (most common by-product)



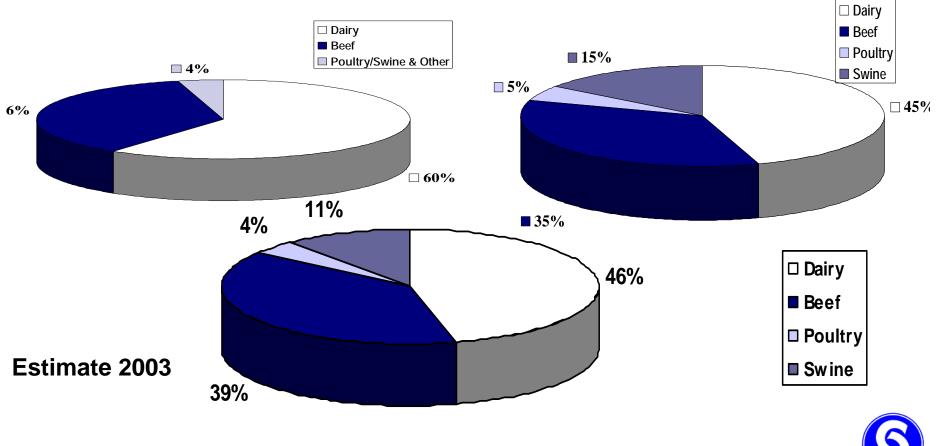
Dry-Milling Average Ethanol Yield Per Bushel of Corn



- Ethanol 2.7 gal.
- DDGS 18 lbs.
- CO₂ 18 lbs.

Ethanol Plants in North America - June 16, 2004

U.S. DDGS Production



Source: Steve Markham – Commodity Specialists Company

U.S. DDGS Consumption

Estimate 2001

Estimate 2002

What Are the Challenges?

1. No grading system to differentiate quality and price

2. Inconsistent quality

- nutrient content
- color
- particle size
- 3. System to directly **connect customers to suppliers**
- 4. **Misrepresenting** quality and nutrient specifications and **blending DDGS** with other ingredients
- 5. Flowability

DDGS Varies Nutrient Content and Digestibility, Color, and Particle Size Among U.S. Sources

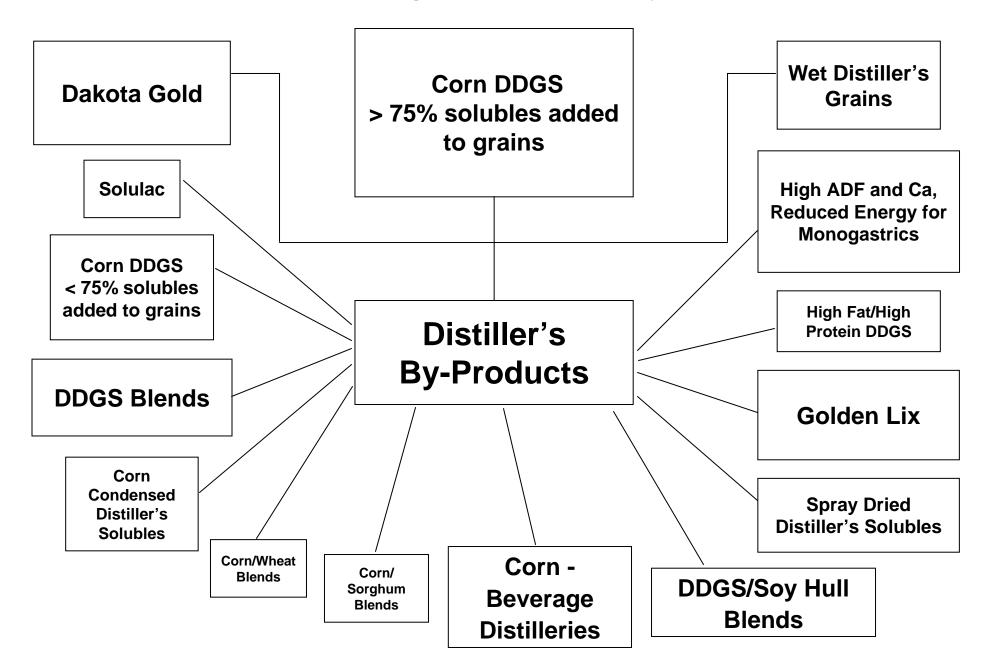
Samples of Golden Corn DDGS from Various Midwestern U.S. Ethanol Plants

VeraSun - Aurora, SD CVEC - Benson, MN Al-Corn - Claremont, MN MGP – Lakota, IA

CMEC - Little Falls, MN

Agri-Energy - Luverne, MN

LSCP - Marcus, IA


DENCO – Morris, MN

Comparison of Nutrient Composition (Dry Matter Basis) of "New Generation" DDGS to Other "DDGS Sources"

	"New Generation" Corn DDGS	Solulac	Badger State Ethanol	ADM - Peoria	Extruded DDGS/Soy (XDS Plus)	AGP Pelleted
Protein, %	31.82	29.32	31.62	30.12	34.44	27.0
Fat, %	11.32	3.52	15.25	8.96	13.33	9.00
Crude fiber, %	6.25	7.90	No data	7.77	7.78	15.10
ADF, %	12.37	11.80	17.91	20.95	14.44	No data
Ash, %	6.93	5.29	4.58	7.30	5.56	4.28
DE, kcal/kg*	4053	3808	No data	3796	No data	No data
ME, kcal/kg*	3781	3577	No data	3560	3749	No data
Lys, %	0.92	0.61	0.90	0.83	1.67	No data
Met, %	0.62	0.54	0.54	0.66	0.61	No data
Thr, %	1.17	1.01	1.04	1.13	2.50	No data
Trp, %	0.25	0.18	0.23	0.25	0.39	No data
Ca, %	0.07	0.12	0.06	0.51	0.22	0.17
P, %	0.77	0.78	0.89	0.68	0.72	0.62

*Calculated energy values for swine

Potential Categories of Distiller's By-Products

Proximate Analysis of "New Generation"DDGS (100% Dry Matter Basis)

Nutrient	"New Generation" DDGS				
Dry matter, %	89.2				
Crude protein, %	31.6				
Fat, %	11.5				
Crude fiber, %	6.2				
Ash, %	7.8				
NFE, %	42.8				
ADF, %	11.2				

Comparison of Amino Acid Composition of DDGS (88% dry matter basis)

	"New" DDGS	"Old" DDGS	DDGS (NRC, 1998)
Lysine, %	0.75 (17.3)	0.47 (26.5)	0.59
Methionine, %	0.63 (13.6)	0.44 (4.5)	0.48
Threonine, %	0.99 (6.4)	0.86 (7.3)	0.89
Tryptophan, %	0.22 (6.7)	0.17 (19.8)	0.24
Valine, %	1.32 (7.2)	1.22 (2.3)	1.23
Arginine, %	1.06 (9.1)	0.81 (18.7)	1.07
Histidine, %	0.67 (7.8)	0.54 (15.2)	0.65
Leucine, %	3.12 (6.4)	2.61 (12.4)	2.43
Isoleucine, %	0.99 (8.7)	0.88 (9.1)	0.98
Phenylalanine, %	1.29 (6.6)	1.12 (8.1)	1.27

Values in () are CV's among plants

Composition of Distiller's Grains for Cattle

<u>Nutrient</u>	% of DM
Crude Protein	30-36
RUP, % of CP	47-57
NE _L , Mcal/lb	1.00
Fat, %	9.8
ADF, %	19.0
NDF, %	38.0
Ca, %	0.15
P, %	0.83

Energy Value of DDGS for Ruminants

Good Quality DDGS contains:

7-11% more energy than "book values" 10-20% more energy than corn

 $NE_L = 1.00 \text{ Mcal/lb}$ $NE_M = 1.06 \text{ Mcal/lb}$ $NE_G = 0.73 \text{ Mcal/lb}$ TDN = 94% DE = 1.84 Mcal/lbME = 1.64 Mcal/lb

Protein in Distiller's Grains

> 30% of DM and more than old "book values"

- Similar for DDG & DDGS

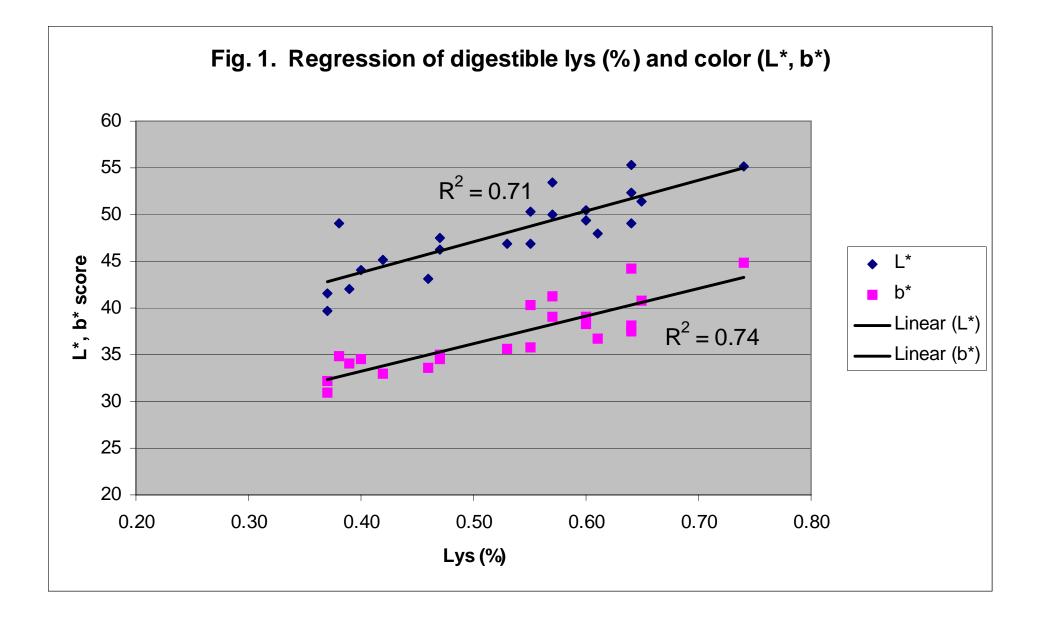
Good source of Ruminally Undegradable Protein (~55% RUP)

- RUP is slightly less for wet vs. dried DDG

Protein quality

- Fairly good quality
- Lysine is the first limiting amino acid

"Old Generation" vs. "New Generation" DDGS


Corn DDGS Color and Smell are Indicators of Digestibility for Monogastrics

Color varies among sources

- ranges from dark to golden (Cromwell et al., 1993)
- golden color of corn DDGS is correlated with higher amino acid digestibility in swine and poultry

Smell varies among sources

- ranges from burnt or smoky to sweet and fermented (Cromwell et al., 1993)
- □ golden DDGS has a sweet, fermented smell
- □ smell may affect palatability

The Use of DDGS in Swine Diets

DDGS Feeding Value for Swine

- Energy value of golden sources comparable to corn
- High available P reduces manure P
- Adding 10% DDGS to finishing diets reduces the length, severity, and prevalence of ileitis lesions in a moderate disease challenge
- Feeding a 50% DDGS diet in gestation and 20% DDGS diet in lactation may increase litter size

Maximum Inclusion Rates of "New Generation" DDGS in Swine Diets (Based Upon University of Minnesota Performance Trials)

- Nursery pigs (> 7 kg)
 Up to 25 %
- Grow-finish pigs
 Up to 20% (higher levels may reduce pork fat quality)
- Gestating sows
 - □ Up to 50%
- Lactating sows
 - □ Up to 20%

Assumptions: no mycotoxins

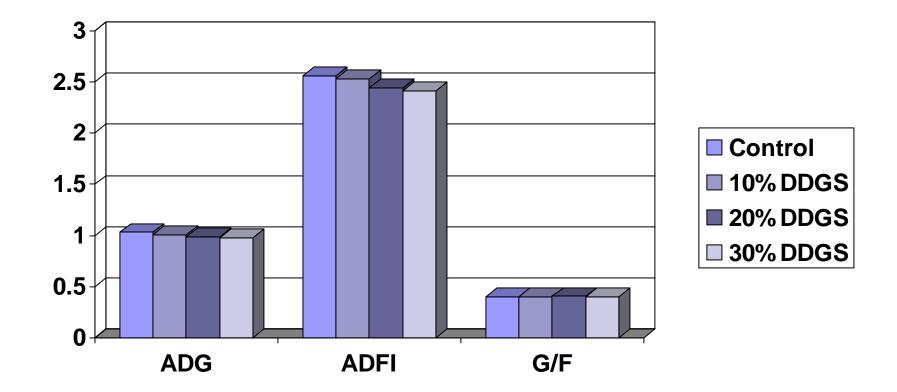
formulate on a digestible amino acid and available phosphorus basis

Comparison of DE and ME Estimates of DDGS (88% DM)

	DE, Mcal/kg	ME, Mcal/kg	NE, Mcal/kg
U of M – New Generation (1999)	3.49	3.37	No data
U of M – Old Generation (1999) ¹	3.41	3.10	No data
KSU – New Generation (2004) ²	3.87	3.49 – 3.70	2.61
KSU – "Old Generation" (2004) ³	3.73	3.13 – 3.59	2.45
Hanor-Hubbard-Ajinomoto (2004) ⁴	No data	3.25	2.42
NRC (1998)	3.45	2.67	No data

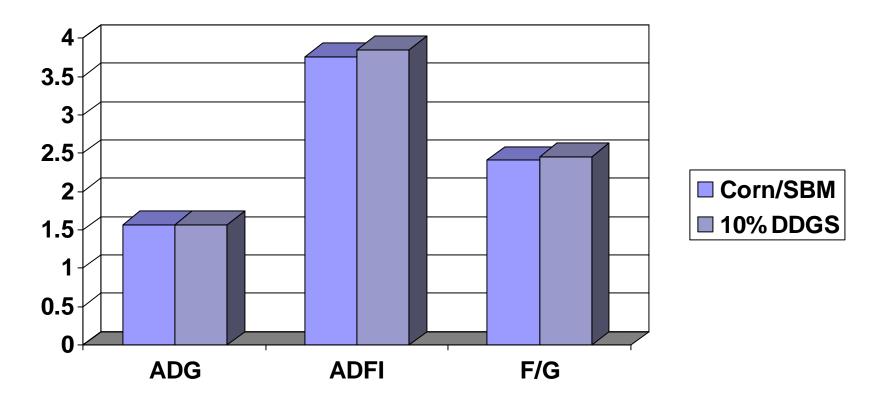
¹ Calculated values

² Determined by growth and metabolism trials (source Dakota Gold)


³ Not DDGS but corn gluten from a NE ethanol plant

⁴ Determined by growth trials (source Dakota Gold)

G-F Trial Procedures (Fu et al. 2004)


- DDGS source Dakota Gold
- Used 256 barrows (initial wt.= 28.5 kg)
- 92 d feeding period
- 5 phase feeding program
- Diets contained 0, 10, 20, or 30% DDGS
 - □ Formulated on a equivalent ileal digestible lysine and isocaloric basis
 - Contained 0.15% (phase 1-4) or 0.10% (phase 5) L-lysine HCl to keep digestible threonine, tryptophan, and sulfur amino acids <u>></u> the control diets

Effect of DDGS Inclusion Rate on ADG, ADFI, and G/F for 92-d Grow-Finish Period

Fu et al. (2004)

Effect of Adding 10% DDGS to Grow-Finish Diets on ADG, ADFI, and F/G for a 64 d Grow-Finish Period

Lawrence (2003) – Hubbard Milling Commercial Feeding Trial

Effect of DDGS Inclusion Rate on Carcass Characteristics (Fu et al. 2004)

Increasing dietary DDGS level:

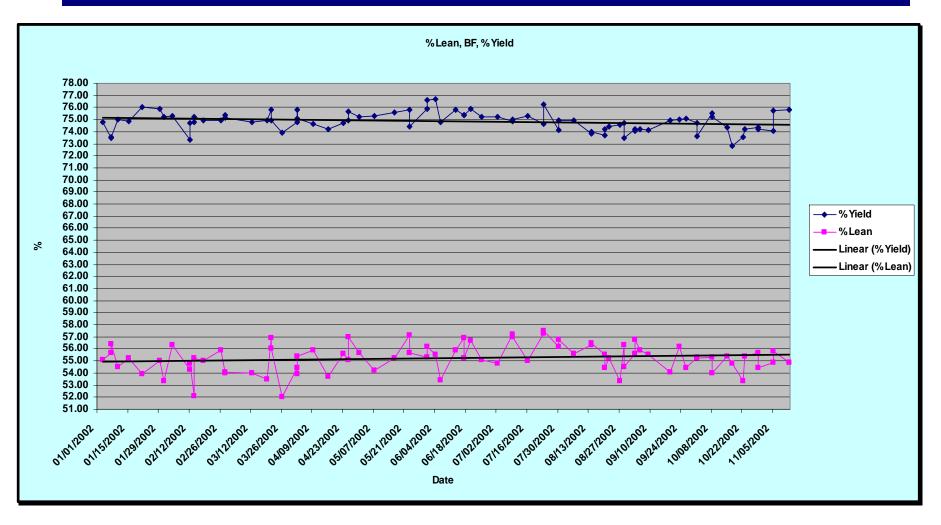
 Linearly decreased carcass weight
 No effect on backfat
 No effect on loin depth
 No effect on % carcass lean
 No effect on carcass yield

Typical Grow-Finish Pig Performance in a 1000 Head Commercial Finishing Barn

Grow-Finish Pigs Fed Diets Containing DDGS

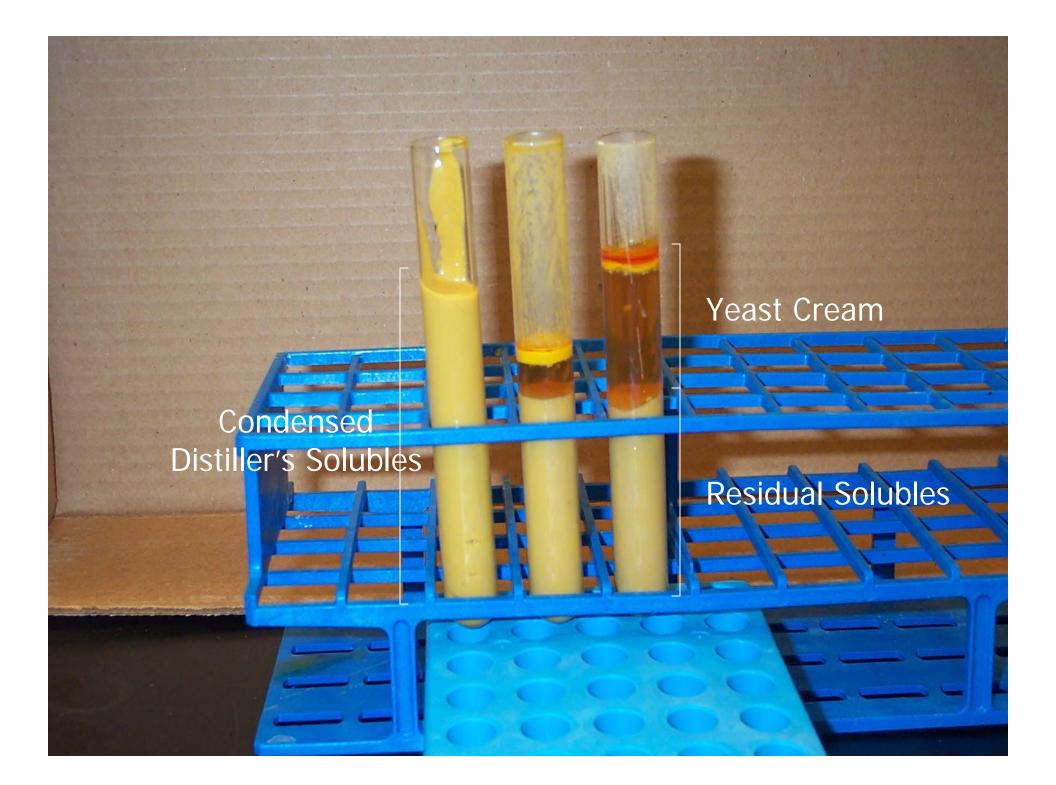
	No DDGS	10% DDGS
Pigs in	993	988
Pigs Out	979	971
Daily Gain, lb	1.63	1.62
Feed:Gain	2.75	2.74
Feed cost, \$/hd	\$32.69	\$32.53

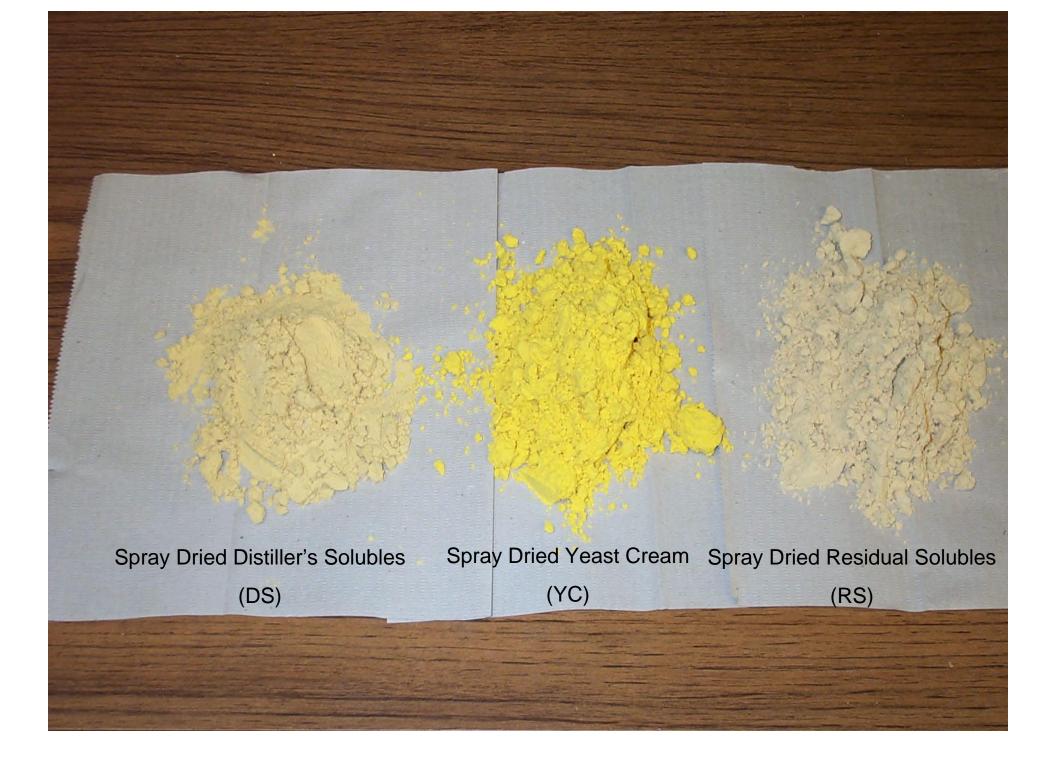
Source: Land O'Lakes Farmland Feed


Actual Close-Outs on Commercial Swine Finishing Operations

	# in	# out	Wt in	Wt out	DL	ADG	F/G	ADC	Days
Farm 1:									
Averages			58.7	253.0	3.35	1.71	2.79	4.79	113
Total head	24,676	23,852							
Farm 2:									
Averages			47.2	265.2	2.88	1.75	2.86	5.00	124
Total head	8,798	8,545							
Farm 3:									
Averages			51.5	259.2	2.33	1.74	2.76	4.82	119
Total head	13,887	13,563							

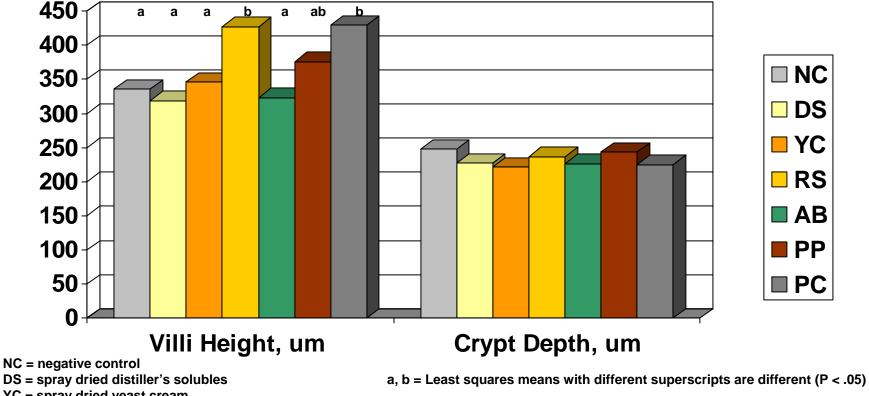
Source: Land O'Lakes Farmland Feed


Carcass Yield and % Lean of Pigs Fed 10% DDGS Diets on a Commercial Swine Operation in 2002

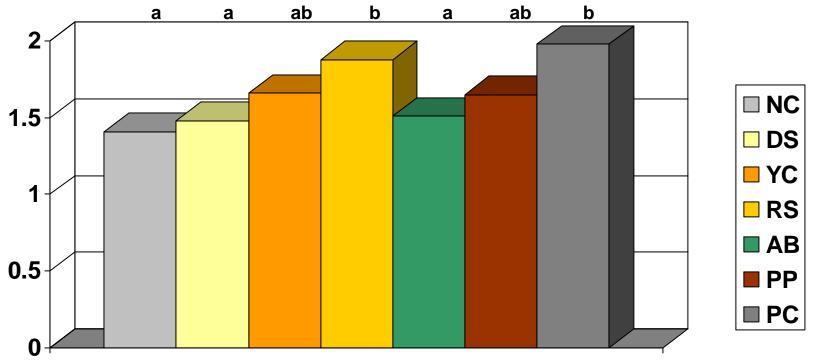

(10% DDGS was added to diets mid-year)

Source: Land O' Lakes

Are There Components of Corn Distiller's Solubles that Are Responsible for Enteric Health Benefits?



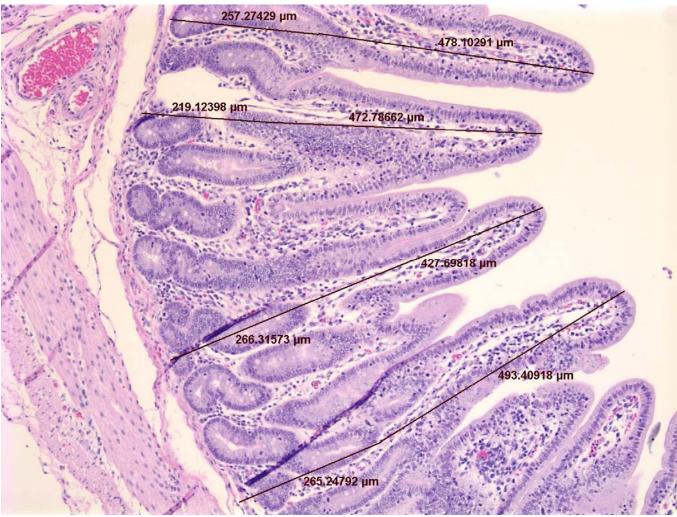
Materials and Methods


- 7 dietary treatments fed from day 0 to 10 post-weaning
 - □ NC = negative control
 - □ DS = spray dried distiller's solubles
 - 15% of the diet
 - □ YC = spray dried yeast cream
 - 7.5% of the diet
 - replaced animal fat
 - □ RS = spray dried residual solubles
 - 15% of the diet
 - \Box AB = carbadox
 - **50** g/ton
 - PP = spray dried porcine plasma
 - 6% of the diet
 - □ PC = spray dried porcine plasma + carbadox
 - 6% PP + 50 g/ton AB

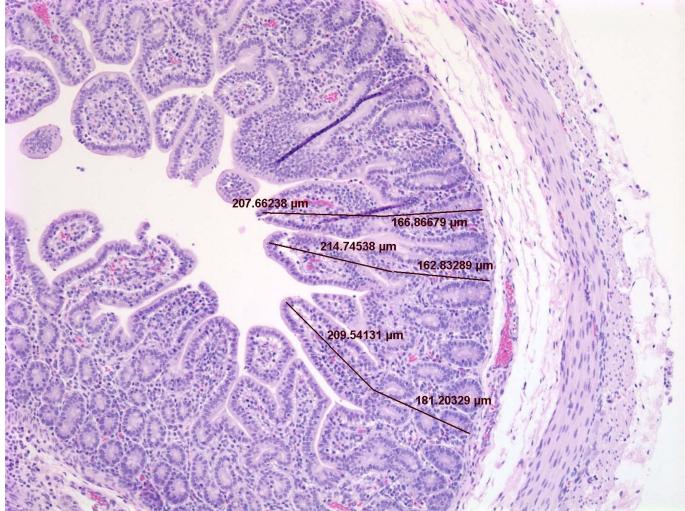
Villi Height and Crypt Depth in the Upper 25% of the Small Intestine

- YC = spray dried yeast cream
- **RS** = spray dried residual solubles
- AB = carbadox
- **PP** = spray dried porcine plasma
- PC = spray dried porcine plasma + carbadox

Villi Height:Crypt Depth Ratio in the Upper 25% of the Small Intestine



a, b = Least squares means with different superscripts are different (P < .05)


Height:Depth Ratio

- NC = negative control
- DS = spray dried distiller's solubles
- YC = spray dried yeast cream
- **RS** = spray dried residual solubles
- AB = carbadox
- **PP** = spray dried porcine plasma
- PC = spray dried porcine plasma + carbadox

Villi Measurements from the Upper 25% of the Small Intestine from a Pig Fed the Residual Solubles Diet (10X)

Villi Measurements from the Upper 25% of the Small Intestine from a Pig Fed the Carbadox Diet (10X)

The Use of DDGS in Dairy Rations

Is There a Difference When Feeding Whiskey or Fuel Ethanol Distillers Grains?

When milk production was compared between feeding DDGS from whiskey or fuel ethanol plants:

- * Similar milk production
- * Higher production than when fed SBM
- * If DDGS was dark (heat damaged?):
 - production was the same as when fed SBM

Florida Research (1995)

Wet vs. Dried Distiller's Grains

Nutrient content of DM is the same for both

Considerations for Wet Distiller's Grains:

- Can usually store only 5-7 days
- May need preservatives (e.g. propionic acid or other organic acids, etc.)
- Limited economical hauling distances
- Rations may be too wet
 - limit total DM intake, especially if ensiled forages are also fed

Production Response of Dairy Cows When Fed Distiller's Grains

The same as, or greater than when fed SBM

Increased or no change when supplemented with protected lysine & methionine

Similar to when fed a blend of protein supplements (SBM, FM, DG)

How Much Distiller's Grains Can be Fed to Dairy Cows?

Recommend max. of ~ 20% of ration DM

- 10-13 lb/d of dried
- 30-40 lb/d of wet

Usually no palatability problems


At 30% of DM:

- May decrease DMI, especially if Wet CDG
- May feed excess protein

Example Ration Considerations for Dairy Cattle

Diets containing 50:50 forage:concentrate

- If equal proportions of alfalfa & corn silage *DG can replace most or all protein supplement
- If mostly corn silage
 - * More DG can be fed but may need some other protein supplement (check Lysine and P levels)
- If mostly alfalfa
 - * Less DG likely needed to supply diet CP

Nutritional Value of DDGS for Beef Cattle

- Excellent protein source (28% crude protein)
- High by-pass protein
- Excellent source of essential minerals (P and K)
- Improves rumen health
- Very palatable
- 1.8 times more value compared to soybean meal

Distiller's Grains for Beef Cattle

- As protein source
 6-15% of ration DM
- As an energy source when fed at >15% of DM
 - may reduce acidosis because highly digestible fiber in place of starch
- ADG and F/G usually better than with corn

Klopfenstein et al., University of Nebraska

Value of Nutrients in DDGS for Finishing Cattle

- Energy
 - □ Wet distiller's grains 110 to 125% energy of corn (DM basis)
 - □ DDGS 100% of corn (DM basis)
- Protein
 - □ By-pass > soybean meal
 - \Box Wet = Dry is properly dried
- Fiber
 - High fiber and low starch reduces fermentation rate
 - Safe ingredient to start cattle on finishing diets
 - Reduces subacute acidosis
- Fat
 - □ Oil content limits the quantity fed (<40%)
- Phosphorus
 - No value in corn-based finishing diets
 - Value as a supplement to low P forages

How Much Distiller's By-Products Can Be Fed to Beef Cattle?

- DDGS (90% DM)
 - □ Feed to supply protein to meet requirement
 - < 20 % ration dry matter</p>
- Wet DGS (30% DM)
 - □ Feed to supply protein and energy
 - Commonly fed at < 25% of ration dry matter
 - Greatest value at 15 to 20% of ration dry matter
 - □ Can feed up to 40% of ration dry matter
 - Overfeed protein and phosphorus
- Wet Condensed Distiller's Solubles (30% DM)
 - Feed to supply protein and energy
 - Limit to < 10% of ration dry matter

Value of By-Products for Beef

		Cost	DM%	NEg	CP%	Ratio
	Corn per bushel	\$3.05	88.0	66	9.5	
F Provi	Hi Pro Soybean Meal per ton	\$320	89.0	65	53.4	25%
SIL	Feed Grade Urea per ton	\$490	99.0	0	286	75%
and the second second		100%	DM	Maximum	Value per Tor	n, delivered
		100% NEg	DM	Maximum Energy	Value per Tor Protein	n, delivered Total
Commodity	DM %		DM CP %			
Commodity Corn Screenings	DM % 86	NEg		Energy	Protein	Total
_		NEg Mcal/cwt	CP %	Energy Value/ton	Protein Value/ton	Total Value/ton
Corn Screenings	86	NEg Mcal/cwt 52	CP % 9.5	Energy Value/ton \$67	Protein Value/ton \$21	Total Value/ton \$88
Corn Screenings Corn Gluten Feed, Dry	86 90	NEg Mcal/cwt 52 63	CP % 9.5 20	Energy Value/ton \$67 \$85	Protein Value/ton \$21 \$47	Total Value/ton \$88 \$132
Corn Screenings Corn Gluten Feed, Dry Corn Gluten Feed, Wet	86 90 40	NEg Mcal/cwt 52 63 63	CP % 9.5 20 20	Energy Value/ton \$67 \$85 \$38	Protein Value/ton \$21 \$47 \$21	Total Value/ton \$88 \$132 \$59
Corn Screenings Corn Gluten Feed, Dry Corn Gluten Feed, Wet Cottonseed, Whole	86 90 40 91	NEg Mcal/cwt 52 63 63 63 72	CP % 9.5 20 20 23	Energy Value/ton \$67 \$85 \$38 \$98	Protein Value/ton \$21 \$47 \$21 \$54	Total Value/ton \$88 \$132 \$59 \$153

DDGS Relative Value Differs Depending on Species

	Feed	Dollars/ ton
Assumptions:	Dairy Lactation	\$114.24
•Corn \$2.00 / bu		ΨΤΤΤ.2-Τ
•SBM \$175.00 / ton	Poultry Finisher	\$100.09
•Urea \$360.00 / ton	Layer Diet	\$104.66
•Non-ruminant diets corn/SBM		·
•Ruminant diets typical diets	Swine G-F Diet	\$96.34
with competing by-products.	Beef Feedlot	\$108.00

Source: Tilstra, Land O' Lakes

U of M DDGS Web Site www.ddgs.umn.edu

We have developed a DDGS web site featuring:

* research summaries

- swine, poultry, dairy, & beef
- DDGS quality
- * presentations given
- * links to other DDGS related web sites
- * international audiences