Opportunities for Using DDGS in Livestock and Poultry Feeds in Canada

Dr. Jerry ShursonDept. of Animal ScienceUniversity of Minnesota

"New Generation" vs. "Old Generation" DDGS

Lower Quality, Less Digestible DDGS

High Quality, Highly Digestible DDGS

Comparison of Energy Values of DDGS for Swine (88% DM Basis)

"New" DDGS Calculated	"New" DDGS Trial avo	"Old" DDGS Calculated	DDGS NRC
Calculated	That avg.	Calculated	(1998)
1582	1600	1546	1564
Range	Range		
1550-1604	1349-1853		
1434	1527	1405	1212
Range	Range		
1400-1458	1279-1776		
	"New" DDGS Calculated 1582 Range 1550-1604 1434 Range 1400-1458	"New""New"DDGSDDGSCalculatedTrial avg.15821600RangeRange1550-16041349-185314341527RangeRange1400-14581279-1776	"New""Old"DDGSDDGSDDGSCalculatedTrial avg.Calculated158216001546RangeRange1550-16041349-1853-143415271405RangeRange1400-14581279-1776-

Corn (NRC, 1998): DE (kcal/lb) = 1580 ME (kcal/lb) = 1534

Comparison of Amino Acid Composition of DDGS (88% dry matter basis)

	"New" DDGS	"Old" DDGS	DDGS (NRC, 1998)
Lysine, %	0.75 (17.3)	0.47 (26.5)	0.59
Methionine, %	0.63 (13.6)	0.44 (4.5)	0.48
Threonine, %	0.99 (6.4)	0.86 (7.3)	0.89
Tryptophan, %	0.22 (6.7)	0.17 (19.8)	0.24
Valine, %	1.32 (7.2)	1.22 (2.3)	1.23
Arginine, %	1.06 (9.1)	0.81 (18.7)	1.07
Histidine, %	0.67 (7.8)	0.54 (15.2)	0.65
Leucine, %	3.12 (6.4)	2.61 (12.4)	2.43
Isoleucine, %	0.99 (8.7)	0.88 (9.1)	0.98
Phenylalanine, %	1.29 (6.6)	1.12 (8.1)	1.27

Values in () are CV's among plants

Comparison of Apparent Heal Digestible Amino Acid Composition of DDGS for Swine (88% dry matter basis)

	"New" DDGS	"Old" DDGS	DDGS (NRC, 1998)
Lysine, %	0.39	0.00	0.27
Methionine, %	0.28	0.21	0.34
Threonine, %	0.55	0.32	0.49
Tryptophan, %	0.13	0.13	0.12
Valine, %	0.81	0.45	0.77
Arginine, %	0.79	0.53	0.77
Histidine, %	0.45	0.26	0.40
Leucine, %	2.26	1.62	1.85
Isoleucine, %	0.63	0.37	0.64
Phenylalanine, %	0.78	0.60	0.96

Comparison of Phosphorus Level and Relative Availability of DDGS for Swine (88% dry matter basis)

	"New" DDGS	"Old" DDGS	DDGS NRC (1998)	Corn NRC (1998)
Total P, %	0.78 Range 0.62-0.87	0.79	0.73	0.25
P Availability, %	90 Range 88-92	No data	77	14
Available P, %	0.70	No data	0.56	0.03

Maximum Inclusion Rates of "New Generation" DDGS in Swine Diets

(Based Upon University of Minnesota Performance Trials)

- Nursery pigs (> 7 kg)
 - Up to 25 %
- Grow-finish pigs
 - Up to 20% (higher levels may reduce pork fat quality)
- Gestating sows
 - Up to 50%
- Lactating sows
 - Up to 20%

Assumptions: no mycotoxins

formulate on a digestible amino acid and available phosphorus basis

Calculating the Value of "New **Generation**" DDGS in Swine Diets **Using Soybean Meal 44%**

Additions/1000 kg diet

+	100 kg DDGS	Х	cost/kg	= 5	\$
+	1.5 kg limestone	Х	cost/kg	= 5	\$
Т	OTAL ADDITIONS (A)			= \$	\$
Sı	ubtractions/1000 kg diet				
-	88.5 kg corn	х	cost/kg	= 5	\$
-	10 kg SBM (44%)	Х	cost/kg	= 5	\$
-	3 kg dicalcium phosphate	Х	cost/kg	= 5	\$

3 kg dicalcium phosphate TOTAL SUBTRACTIONS (S)

= \$

S - A = Opportunity cost for DDGS/100 kg

Current Livestock and Poultry Industries in Canada

Number of Cattle, Swine, and Poultry in Canada

- 15.55 million cattle and calves
- 13.96 million pigs
- 102.26 million layers and broilers
- 8.59 million turkeys

Province Ranking of Number of Cattle and Calves on Inventory (2001)

- Total 15.55 million hd
 - 1. Alberta 6.62 million hd (42.54%)
 - 2. Saskatchewan 2.90 million hd (18.64%)
 - **3.** Ontario 2.14 million hd (13.77%)
 - 4. Manitoba 1.42 million hd (9.16%)
 - 5. Quebec 1.36 million hd (8.76%)
 - 6. British Columbia 0.81 million hd (5.24%)

Province Ranking of Number of Swine on Inventory (2001)

- Total 13.96 million hd
 - 1. Quebec 4.27 million hd (30.57%)
 - **2.** Ontario 3.46 million hd (24.77%)
 - **3.** Manitoba 2.54 million hd (18.20%)
 - 4. Alberta 2.03 million hd (14.52%)
 - 5. Saskatchewan 1.11 million hd (8.00%)
 - 6. British Columbia 0.17 million hd(1.18%)

Province Ranking of Number of Layers and Broilers on Inventory (2001)

- Total 126.16 million hd
 - 1. Ontario 43.62 million (34.58%)
 - 2. Quebec 29.21 million (23.15%)
 - **3.** British Columbia 18.82 million (14.92%)
 - 4. Alberta 12.18 million (9.65%)
 - 5. Manitoba 7.99 million (6.33%)
 - 6. Saskatchewan 4.68 million (3.71%)

Province Ranking of Number of Turkeys on Inventory (2001)

- Total 8.12 million hd
 - **1.** Ontario 3.40 million (41.93%)
 - 2. Quebec 1.75 million (21.53%)
 - **3.** Alberta 0.86 million (10.65%)
 - 4. British Columbia 0.82 million (10.10%)
 - 5. Manitoba 0.69 million (8.55%)
 - 6. Saskatchewan 0.28 million (3.44%)

Number and % Change of Cattle, Swine, and Poultry from 1996 to 2001 (million hd)

Source: 2001 Canada Census of Agriculture

Estimated Total Amount of Feed Required in the Canadian Livestock and Poultry Industries

- 23 million metric tonnes
 - Swine 36%
 - Beef 29%
 - Dairy 18%
 - Poultry 14%
 - Other 3%

Source: Animal Nutrition Association of Canada, 2000

What If 1% of All Canadian Livestock and Poultry Feeds Contained 10% DDGS?

	Feed Manufactured/Yr (metric tonnes)	DDGS added to 1% of total feed tonnes	DDGS diets contain 10% DDGS
Swine	8,280,000	82,800	8,280 MT
Beef	6,670,000	66,700	6,670 MT
Dairy	4,140,000	41,400	4,140 MT
Poultry	3,220,000	32,200	3,220 MT

Total = 22,310 MT DDGS

Total Number of Commercial Feed Mills in Canada

- Approximately 520 commercial feed mills (vary in manufacturing capacity)
 - Quebec 34%
 - Ontario 33%
 - Prairies 23%
 - British Columbia 5%
 - Atlantic 5%

Source: Animal Nutrition Association of Canada, 2000

Primary Crops Produced in Canada

- Spring wheat 8.3 million hectares
- Barley 4.7 million hectares
- Alfalfa 4.5 million hectares
- Canola 3.8 million hectares
- Other hay and fodder 2.8 million hectares

Hectares of Various Crops Produced in Canadian Provinces (millions)

Future of DDGS Use in Canada

- Corn DDGS will compete with wheat, barley, corn, canola, and soybean meal in livestock and poultry feeds used in Canada
- Limited quantities of wheat DDGS produced in Canada are available to the feed industry
- As the Canadian ethanol industry grows, more wheat and corn DDGS will be available for feeding in Canada
- Lower quality corn DDGS has been used in cattle feeds in Canada for many years

Future of DDGS Use in Canada

- Very little high quality DDGS is currently being fed to swine and poultry
 - Lack of awareness of nutritional value for swine and poultry
- 65% of commercial feed manufactured is for swine and beef cattle
 - Canadian swine and beef industries represent an excellent target export market
 - Good opportunities exist for dairy and poultry also
- Close proximity of northern U.S. ethanol plants to Canada provides a freight advantage compared to other export markets

Issues Regarding DDGS Use in Canada

- Consistency of quality and nutrient content
 - Identify single source
 - Complete nutrient profiles are essential
 - Certification
- Risk of vomitoxin contamination
- Awareness of feeding value of "new generation" DDGS for swine and poultry
- Price, transportation logistics, and storage

Recommendations

- Canadian swine industry represents the largest potential DDGS market followed by beef, dairy, and poultry.
- Educational programs are needed to increase awareness and understanding of the feeding value of "new generation" DDGS to swine and poultry.

Recommendations

- Additional market development efforts are needed in:
 - Ontario
 - 1st broilers and layers
 - 1st turkeys
 - 2nd pigs
 - 3rd cattle
 - Quebec
 - 1st pigs
 - 2nd broilers and layers
 - 2nd turkeys

Recommendations

- A regional or national DDGS certification program is needed to meet the demands of customers in the export market (including Canada).
- Research funding and coordination is needed to answer export customer questions related to DDGS (and fractions) quality and usage.