Update-Utilization of Feed Byproducts of the Biofuels Industry in Turkey Diets

> Sally Noll, Ph.D. University of Minnesota nollx001@umn.edu

Presented at the National Turkey Federation Convention February 11, 2008

UNIVERSITY OF MINNESOTA

DDGS Update

Corn, Conventional Product

Research Areas

- Amino acids (Digestibility & content)
 - Lysine and heat damage
 - Limiting in lys, arg, try
- Phosphorus availability (Greater than 60%)
- Inclusion Levels for turkeys
 - **10-20%**
- Energy
 - Batal, 2006- 2820 kcal/kg; Noll, 2004 2830 kcal/kg
 - Manangi et al., 2007
 - Correlated with NDF

DDGS Update Corn, Conventional Product

- Research Areas
 - Nutrient Characteristics & Variability
 - Variability exists (Variation Among Plant > Within Plant)
 - Solubles Addition
 - Type of product

DDGs Nutrient Characteristics*

Content,	Sample	Ave.	NRC,
%	Range		1994
Protein	25.5-30.8	27.8	27.4
Fat	8.9-11.1	10	9
Fiber	5.4-6.5	5.7	9.1
Ca	.017045	.05	.17
Р	.6288	.75	.72
Na	.0517	.12	.48
Cl	.1319	.17	.17
Κ	.87-1.11	.95	.65

*Noll & Parsons, unpublished data

DDGs Nutrient Characteristics

AA, %	Range	Ave.	NRC, 1994
Methionine	.416	.49	.6
Cystine	.4267	.53	.4
Lysine	.5589	.73	.75
Arginine	.89-1.31	1.1	.98
Tryptophan	.1826	.22	.19
Threonine	.85-1.14	.98	.92

*Noll & Parsons, unpublished data

DDGs Nutrient Characteristics*

Amino	Digest	Ave
acid	Coeff	
	(%)	
Methionine	80-90	87
Cystine	66-85	77
Lysine	37-84	68
Arginine	80-90	85
Tryptophan	76-87	83
Threonine	67-81	75

*Noll and Parsons, unpublished data

DDGS Update Corn, Conventional Product

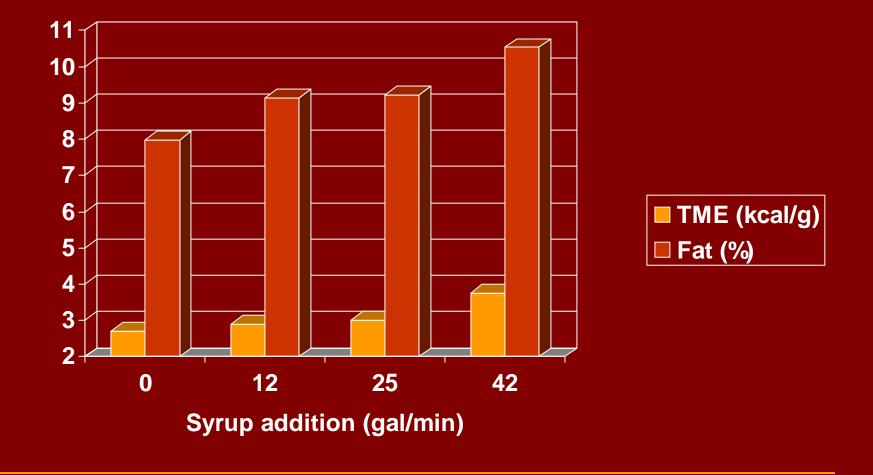
- Research Areas
 - Nutrient Characteristics & Variability
 - Variability exists (Variation Among Plant > Within Plant)
 - Solubles Addition
 - Type of product

Variability in Nutritional Characteristics

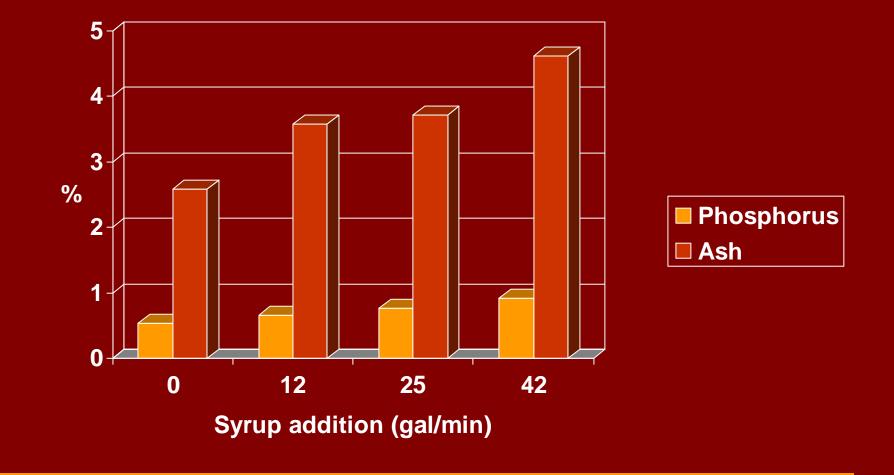
Corn nutrient content
 Processing
 Drying conditions
 Solubles addition (amount)

Varying Solubles Addition

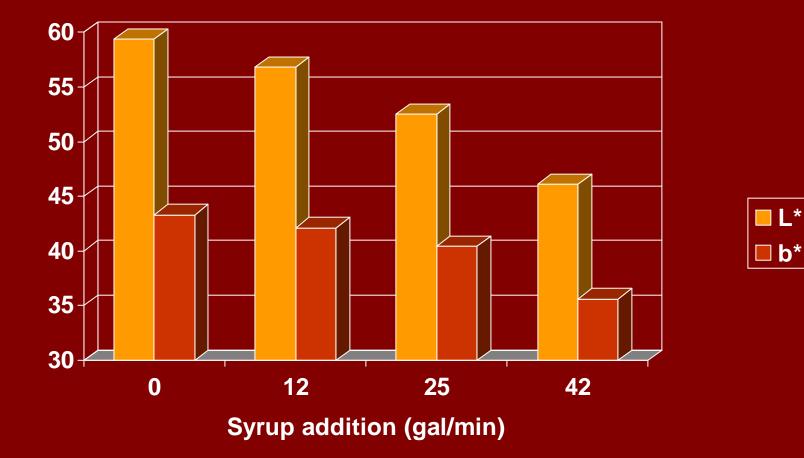
Measure effect on nutritional characteristics of resulting DDGS
Can rate of addition indirectly effect amino acid digestibility? Variable Solubles Addition & DDGS Characteristics-Pilot Study


- Four Syrup Addition Rates
 42, 25, 12, 0 gal/min
- DDGS samples taken from each lot
 - Chemical analyses
 - Amino acid digestibility
- Pearson Correlations with addition rate

Variable Solubles Addition & DDGS Characteristics


- No effect
 - Protein, amino acids content
 - Amino acid digestibility mostly not affected

- Significant correlation found for:
 Color
 Crude fat
 Ash
 - Minerals
 - P
 - **TMEn**


Influence of syrup addition on DDGS fat content and TMEn (DM basis)

Influence of syrup addition on DDGS ash and phosphorus content (DM basis)

Influence of syrup addition on color (L*, b*) of DDGS

Variable Syrup Addition

Changed composition of resulting DDGS
Minerals (P), fat, color, and energy changed
Particle size – "syrup balls" at highest level of solubles addition

Variability – Type of product

Ethanol processing methods continue to evolve & change to improve production efficiency

- Corn fractionation
- Manipulation of DDGS
- Composition very different from conventionally produced DDGS

Nutrient Characteristics of Alternative "DDGS" Products (Batal, 2007)

(%)	Conv. DDGS	HP-DDGS	Dehy. Corn
			germ
Protein	27	44	15.5
Crude fiber	7	7	4.5
Crude fat	10	3	17
P, total	.77	.35	1.18
P, Avail	60	47	31
Lysine, total	.79	1.03	.83
Lys, Avail	81	72	80

Dietary Inclusion Levels of DDGS Previous Research Results Heavy Tom Grow/Finish Diets

Up to 10- 20% in heavy tom grow/finish diets possible in corn-soy based diets
Growth & Feed/gain similar to Control
Some slight reduced performance at 20%
Reduced intact protein (lower protein diets + supplemental thr) + limited intake (summer)
High levels of animal byproduct

>8% PBM

Current Study Objectives

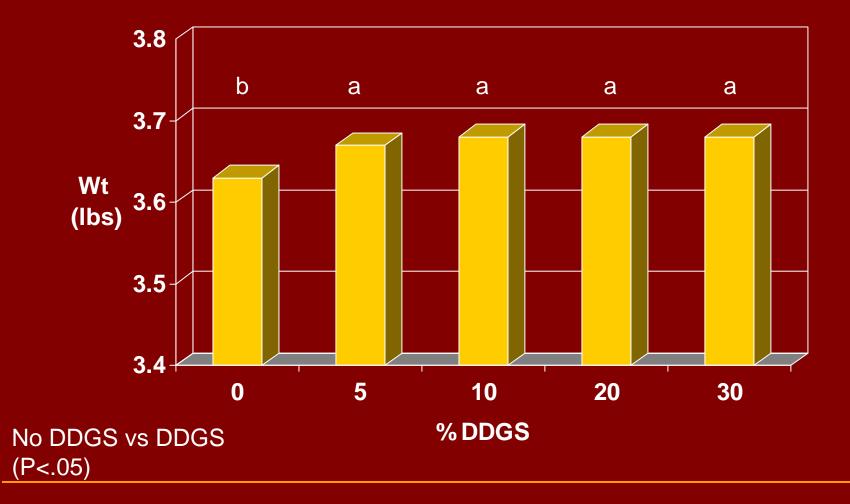
Determine:

- Maximal inclusion levels of DDGS in corn-soymeat based diet when started at different ages and effect on:
 - Turkey performance
 - Litter moisture

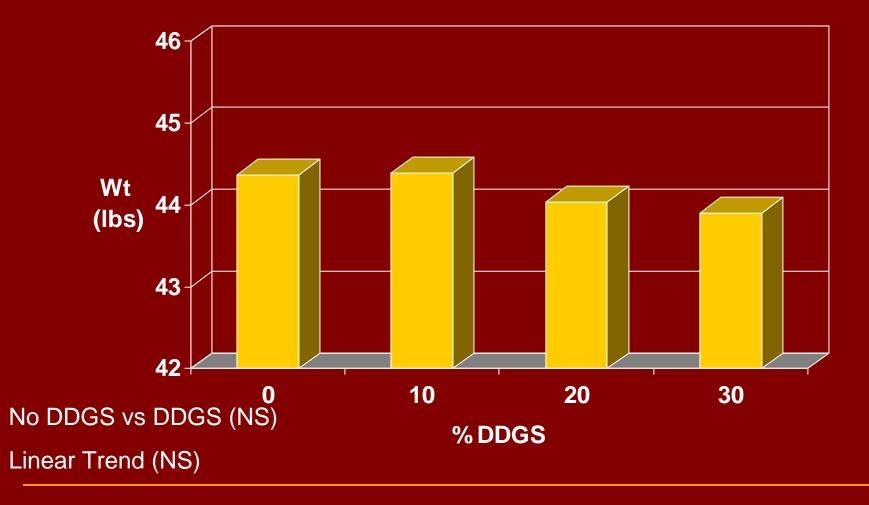
Methods

Ingredients (corn, soy, PBM, DDGS) Nutrient analyses plus digestible amino acids Diets formulated to 100% NRC digestible lys, TSAA, thr Supplemental lys & met; some thr Three wk feeding periods 2-19 wks of age Inclusion level of PBM limited to prevent excess dietary phosphorus Diets fed as mash

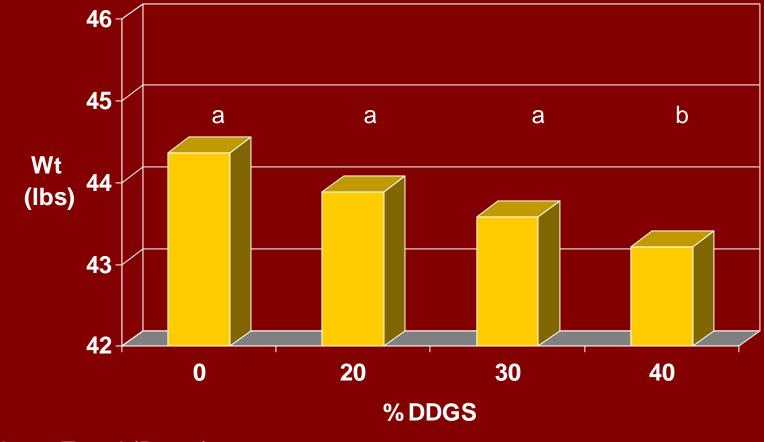
Methods Continued


- Each diet fed to 9 replicate pens of toms (Nicholas, 10b/pen) (90 pens total)
- Trial started at 2 wks of age and finished at 19 wks of age
- Individual bird weights and pen feed intake
- Experimental Design randomized block design
- Statistical analyses ANOVA, LSD, and contrasts

Treatments - DDGS Inclusion Levels (% of Diet)


Treatment	Age Period (wks)					
	2-5	5-8	8-11	11-14	14-17	17-19
1	0	0	0	0	0	0
2	10	10	10	10	10	10
3	20	20	20	20	20	20
4	30	30	30	30	30	30
5	0	10	10	10	10	10
6	0	20	20	20	20	20
7	0	30	30	30	30	30
8	5	10	20	20	20	20
9	5	10	20	30	30	30
10	5	20	30	40	40	40

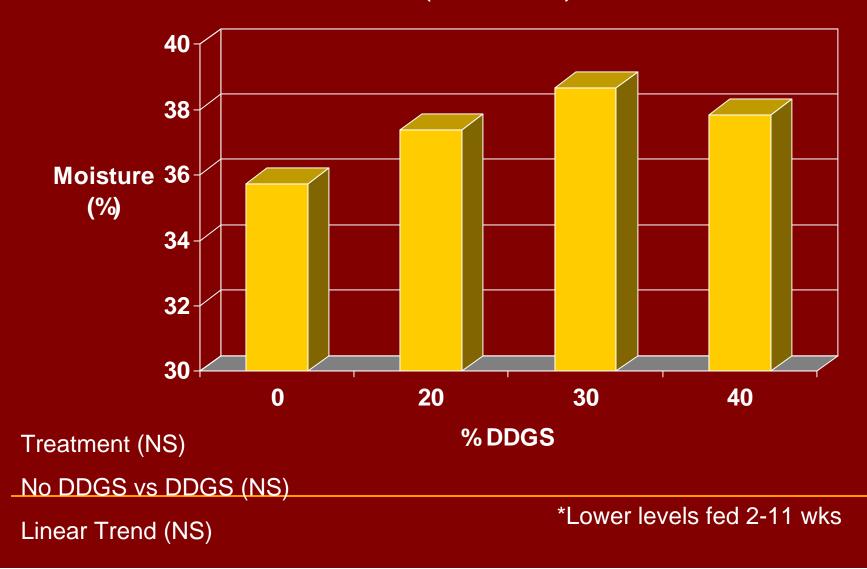
Results


DDGS Level (2-5 wks of age) and Poult Body Weight

DDGS Level (2-19 wks of age) and 19 wk Tom Weight

DDGS Level (11-19 wks of age*) and 19 wk Tom Weight

Linear Trend (P<.03)


*Lower levels fed 2-11 wks

DDGS Level (11-19 wks of age*) and gain

*Lower levels of DDGS fed during 2-11 wks of age

DDGS Level (11-19 wks of age*) and Litter Moisture (15 wks)

Summary

- Inclusion up to 30% DDGS was possible in turkey poult starter diets
- Inclusion of 40% DDGS depressed 19 wk body weight
 - Gain during 17-19 wks depressed
- Litter moisture was not affected by DDGS inclusion

Feeding High Levels of DDGS Dependent on:

- Good quality product (KNOW YOUR SOURCE)
- Analyzed nutrient content available
 - CP, fiber, fat, amino acids, electrolytes
- Formulate on a digestible amino acid basis
 Lys, TSAA, thr, arg, tryp
- Phosphorus availability adjustment
- Appropriate energy level assignment
- No mycotoxins
- Effects on pellet quality

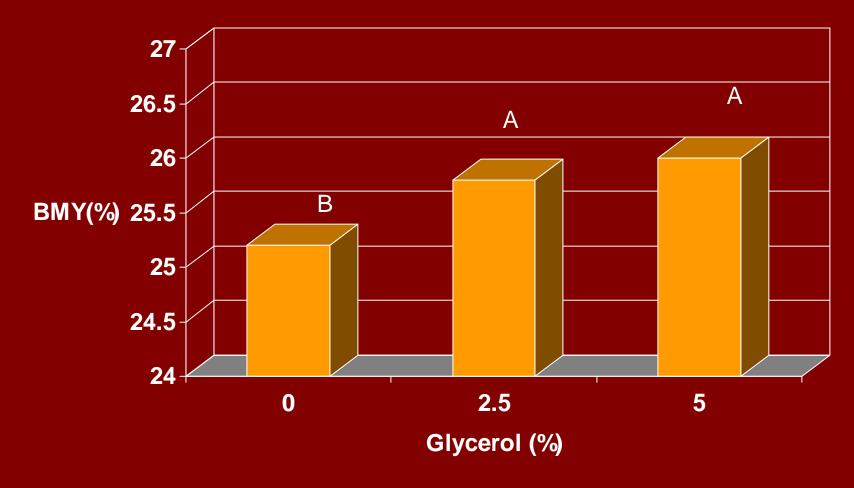
Crude Glycerol (Glycerine) as a Feed Ingredient Potential energy source Gross energy of ~ 3600 kcal/kg By-Product of Biodiesel Process Feedstocks (oils, fats, grease) Utilizes the fatty acid portion of the triglyceride molecule leaving glycerol behind During production add Methanol Catalyst - sodium or potassium

What's in Crude Glycerol?

	Lammers	Noll '08	Thompson & He
(%)	'08		'06**
Glycerol	87	83.5	75-83
Moisture	9.22	12	
Ash	3.19		.25-2.80
Methanol*	.028	LT .015	
Fat	.12		2-13%
Protein	.41		.052
Sodium	1.26	.98	1-1.2
Potassium	<.005		
Chloride	1.86	1.52	

*FDA limit of .015% or 150 ppm **Produced from various vegt. oils

Inclusion of Glycerin and Diet Formulation (Turkey Grower Diet Example)


Ingredient (%)	0%	4%	8%
Corn	58.53	54.21	49.89
SBM	18.28	18.95	19.62
MBM	8	8	8
DDGS	10	10	10
Fat	3.84	3.61	3.38
CP	20.38	20.37	20.35
ME (kcal/kg)	3230	3230	3230

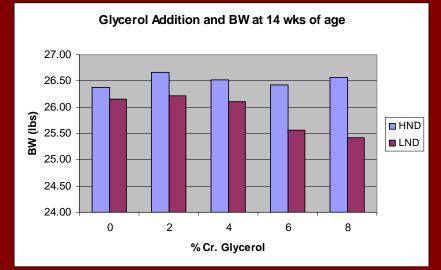
Recent Studies with Feeding of Glycerin

Broiler studies (Cerrate et al., 2006)

- Used an AMEn value of 3527 for diet formulation
 - Gross energy was 3596 kcal/kg
 - Fed as crumbles/pellets
- 0, 5, 10% inclusion
 - 10% decrease growth, increased litter moisture
 - Flowability of feed
- 0, 2.5, 5% inclusion
 - No effect on BW or F:G
 - Improved breast meat yield

Glycerin and Broiler Breast Meat Yield (Exp. 2, Cerrate et al., 2006)

Recent Studies with Feeding of Glycerin


Laying Hen (Lammers et al., 2008)
0, 5, 10, 15% to 40wk old W36 hens
Short term study no effect on performance
AMEn 3805 (+/- 240 kcal/kg)

Market Tom Response to Crude Glycerol

Glycerin additions (0,2,4,6,8%)
Replaced corn – weight equivalent
Two diet regimens (HND and LND)
Experimental period 8-19 wks of age
Diets fed as mash

Funded by MTGA, MPRP; Glycerol supplied by Central Bi

Market Tom Response to Glycerol Addition (TG074 Preliminary Results)

Feed efficiency 11-14 wks of age 2.90 2.80 2.70 HND **5** 2.60 LND 2.50 2.40 2.30 2 8 0 6 4 %CG

Noll, University of Minnesota

Crude glycerol and pellet production (Swine feeding trials, Groesbeck, KSU 2007)

Experiment 1

- Glycerol addition to 9% increased PDI
- Decreased production energy

Experiment 2

- Glycerol of 3 and 6% increased PDI
- Flowability improved in meal diets with hammer mill grd. corn

Summary - Glycerin as a source of energy

Provides primarily energy & some minerals
No significant protein content!
GE 3625 kcal/kg
Chickens - AMEn 3600-3800 kcal/kg
Turkeys (preliminary) - 3600 kcal/kg
Variability in content
Glycerol, methanol, Na and K

Summary - Glycerin as a source of energy

- Meat yield/quality characteristics??
- Seasonal product flowability changes (cold temperature)
- Handling and flowability issues at high inclusion levels??
 - Improve pellet quality??
 - Decrease dust
- Economics of use
 - Tied to cost of protein and ME sources

Concluding Remarks

What will future poultry diets contain for ingredients?

- Potential loss of corn, SBM, fat
- Including more alternatives
 - Dealing with nutrient variability
 - Higher levels of alternatives can be utilized
 - Detrimental properties

Acknowledgments-UM Turkey Research Program

- Funding/Supplies
 - Central Bi-Products
 - CSC
 - ADM
 - USDA-CSREES Special Research Grant to the Midwest Poultry Consortium
 - MTGA
 - AURI

- Technical
 - UM J. Brannon, F. Hrbek
 - UI C. Parsons, P. Utterback
 - MTGA Nutrition Advisory Committee – G. Engelke, J. Halvorson, G. Johnson, D. Nelson, V. Stangeland, G. Speers

University of Minnesota DDGS Webpage

www.ddgs.umn.edu

