What's New Since Sept. 2005 in DDGS Feeding to Poultry Sally Noll University of Minnesota

Minnesota Nutrition Conference, 2006

Introduction (What happened in 2005??)

- 2005 Presentation by Dr. Shurson Covered:
 - Nutrient Characteristics of DDGS
 - New Co-products
 - Feeding Value for Swine
 - Feeding Value for Poultry

Since 2005

- Publications examining lysine digestibility, color, and ME
- Completion of turkey feeding trial
- Reduced ammonia emissions (ISU, Bregendahl, 2006)

DDGS Characteristics for Poultry

- Lysine digestibility, color and metabolizable energy
 - Batal and Dale, 2006
 - Samples from 6 plants in Midwest
 - Fastinger et al., 2006
 - Samples from 5 plants in Midwest (corn)

Lysine Content and Digestibility

Source	No. of Samples	Lysine Content (%)		Lysine Digestibility Coefficient (%)		
		Ave	Range	Ave	Range	
Batal and Dale 2006 ²	8	.71	.3986	70	46-76	
Fastinger et al. 2006 ¹	5	.64	.4875	76	65-82	

Lysine Content and Digestibility

Source	No. of Samples	Lysine Content (%)		Lysine Digestibility Coefficient (%)	
		Ave ·	Range	Ave.	Range
Ergul et al. 2003 ¹	20	.73	.5989	72	59-84
Batal and Dale 2006 ²	8	.71	.3986	70	46-76
Fastinger et al. 2006 ¹	5	.64	.4875	76	65-82

DDGS Color and dLys Content

Batal and Dale, 2006

DDGS Color and dLys Content

Fastinger et al., 2006

DDGS and Color

Batal and Dale, 2006
Samples with less than .5% dLys
L* less than 50

Fastinger et al., 2006
Samples with less than .5% dLys

L* less than 34

Metabolizable Energy (TMEn) of DDGS

	Batal & Dale*		Fastinger et al.**		
Composition	Ave (sd)	Range	Ave	Range	
TMEn	2820	2490-	2871	2484-3047	
(kcal/kg)	(181)	3190			
CP,%	27 (2)	23-30	28	27-29.8	
Cr. fat, %	8.8 (2.3)	2.5-10.6			
Cr. fiber,%	6.6 (.8)	5-8			
Ash,%	4.4 (.4)	3.9-5.4			

*Adjusted to 86% DM ** As fed basis

Prediction Equations for TME (86% DM basis)

Lquation	Κ ²
2439.4+43.2(fat)	.29
2957.1+43.8(fat)- 79.1 (fiber)	.43
	2439.4+43.2(fat) 2957.1+43.8(fat)- 79.1 (fiber)

Differences in TMEn

Weak relationship to fat contentReduced with overheating?

Variability in Nutritional Characteristics

Corn nutrient content
 Processing

 Drying conditions
 Solubles
 Warishility in composition

 Variability in composition of syrup (solubles) and wet grains (mash) among plants (Knott et al. 2004)

Varying Solubles Addition

Measure effect on nutritional characteristics of resulting DDGS

Can rate of addition indirectly effect amino acid digestibility?

Variable Solubles Addition & DDGS Characteristics-Pilot Study

Four Syrup Addition Rates

■ 42, 25, 12, 0 gal/min

DDGS Samples taken from each lot

Chemical analyses

Amino acid digestibility

■ TME

Pearson Correlations with addition rate

Variable Solubles Addition & DDGS Characteristics

No effect

- Protein, amino acids content
- Amino acid digestibility mostly not affected
- Significant correlation found for:
 - Color
 - Crude fat
 - Ash
 - Minerals
 - P
 - TMEn

Influence of syrup addition on DDGS fat content and TMEn (DM basis)

Influence of syrup addition on DDGS ash and phosphorus content (DM basis)

Influence of syrup addition on color (L*, b*) of DDGS

Influence of syrup addition on amino acid digestibility coefficients of DDGS

Thr r=.99 (P<.02)

Variable Syrup Addition

Changed composition of resulting DDGS
Minerals (P), fat, color, and energy changed

Feeding Value for Poultry (Market Tom Turkeys)

- 10% level of inclusion acceptable
- What are maximum feeding levels
 - **5**, 10%
 - 10**,** 15%
 - 20% or greater??
- Concerns
 - Dietary protein (amino acid balance)
 - Phosphorus content
 - Age (feeding period)
 - Season

Market Turkey Study

Examine DDGS utilization in combination with maximal inclusion levels of animal byproduct in grow/finish diets for male turkeys
 DDGS inclusion levels 0, 10, and 20%
 PBM inclusion levels of 0, 8, and 12%

Methods

<u>Diets</u>

Diet formulations adjusted for age

- Ingredients assayed for proximates and digestible amino acids
- Formulated to provide 100% digestible thr and supplemented with met and lys
- Isocaloric to control
- Ratio of calcium to available phosphorus maintained at 2:1
- Fed as mash
- Experimental period 5 19 wks of age

<u>Turkeys</u>

- Male Large White, Nicholas strain
- 10 birds/pen, 8 replicate pens/treatment

Diet Composition (%) Selected Diets 5-8 wks of Age

Ingredient	Trt 1	Trt 3	Trt 5	Trt 9
Corn	46.62	55.10	33.60	41.24
SBM	43.05	29.62	35.36	22.07
PBM	0	12	0	12
DDGS	0	0	20	20
Dl-met	.18	.17	.155	.147
L-lys HCl	.112	.137	.289	.312
Animal fat	5.27	2.01	6.03	3.08
Dical	2.56	.03	2.259	

Results

 Diet affected body weight and feed efficiency
 Interaction of DDGS and PBM observed for body weight at 11 wks of age and feed efficiency (experimental period 5-19 wks of age)

Body weight response to DDGS and PBM at 11 wks of age

DDGS*PBM P<.023

Body weight response to DDGS and PBM at 19 wk BW

Interaction of DDGS and PBM on 5-19 wk F:G

DDGS x PBM (P<.02)

Conclusions

- In comparison to a corn-soy control diet, addition of PBM at 8 or 12% depressed body weight to 11 wks of age.
- In comparison to a corn-soy control diet, addition of 10 or 20% DDGS resulted in similar performance
- In comparison to a corn-soy control diet, addition of both PBM and 20% DDGS resulted in poorer performance, although performance of birds in the trial was very acceptable regardless of treatment.

Summary-DDGS Update

- Lys digestibility averaged 73%
- Lighter color associated with high dLys
- Absolute color values (L*) varies with data set and may be influenced by level of solubles addition
- Metabolizable energy as TME averaged 2820 and 2870 Kcal/kg in two studies
- Solubles addition changes nutrient content
- Feeding trials up to 20% DDGS in corn-soy diets; up to 10% in corn-soy-meat based diet

Acknowledgments-UM Turkey Research Program

- University of Minnesota staff-Jeanine Brannon, Fred Hrbek
- MTGA Nutrition Subcommittee- Dick Nelson, George Speers, Jim Halvorson, Gary Johnson, Greg Engelke
 Funding – Minnesota Turkey Research & Promotion Council, Central Bi-Products, ADM, CSC, Minnesota Corn Growers Association, USDA-CSREES Special Research Grant to the Midwest Poultry Consortium