FEEDING VALUE OF DDGS FOR POULTRY

S. Noll University of Minnesota

Considerations in Feeding DDGS to Poultry

- Product quality and variability
- Amino acid digestibility
- Feeding recommendations for broilers, layers and market turkeys
 - Diet levels
 - Amino acid balance
 - Metabolizable energy content
 - Source of xanthophylls
 - Phosphorus availability or digestibility

DDGs in Broiler Chicken Diets

- Early research prior to 1970's
- Levels of 10% (with adjustment of lysine and energy) supported growing performance
- Levels up to 15% in slower growing birds acceptable

DDGs as a Feed Ingredient for Broilers-Current Studies

- Waldroup et al., 1981
 - DDGs level and dietary energy
- Lumpkins et al., 2004
 - High and low density diets
 - DDGs level
 - Isocaloric and Isonitrogenous

Performance Response of Broiler Chickens (0-42 days) to DDGS in Diets Adjusted and Not Adjusted for Energy

DDGS	B	BW (g)		in/Feed
Inclusion	Fixed	Variable	Fixed	Variable
Level (%)	Energy	Energy	Energy	Energy
0	1288	1206	.513	.493
5	1237	1227	.518	.505
10	1237	1203	.508	.490
15	1220	1165	.513	.444*
20	1246	1164	.498	.467
25	1247	1096*	.500	.446*
* D'CC / C				

* Different from control

Waldroup et al, 1981

DDGs and Broiler Performance

Diet Density &	Gain 18d	G:F 18d
DDGs Level	G	
High, 0%	556a	782a
High, 15%	555a	772a
Low, 0%	523b	712b
Low, 15%	518b	705b

Lumpkins et al., 2004

DDGs and Broilers

Level of	Gain 42d	G:F
DDGs	kg	0-42 d
0	2.31a	566
6	2.29a	554
12	2.29a	565
18	2.24b	554

Lumpkins et al., 2004

DDGs – Broiler Diets (Lumpkins et al., 2004)

- Experiment 1 0 and 15% DDGs at two dietary energy levels (3200 and 3000 kcal/kg – no difference in performance to 18 d re. DDGs
- Experiment 2 0, 6, 12, & 18%
 - BW to 42 days similar to 12%
 - Slight depression in BW at 18%
 - Lowered wts through 16 da

DDGs in Chicken Broiler Diets

- Adjustment for lysine and energy level
- Inclusion level of 15-25% possible
 - Starter diets 6%
 - Grower/Finisher >10%

DDGs and Layer Performance

• Early research

- Matterson et al. (1966) 10 to 20% distillers grains with solubles (DDGS) could be fed to laying hens (1/3 of protein)
- Harms et al. (1969) 10%
 DDGS supported equivalent egg production and weight to corn-soy diet
- Jensen et al. (1974) 10% DDGS to wheat-soy diet benefited from supplemental Lys for egg production

DDGs in Chicken Layer Diets

- General conclusions
 - Levels of 10 & 20% comparable production to control
 - Levels greater than 20% reduced egg weight (research levels of 20, 30, and 44%)
 - Amino acid balance?
 - Some field observations of "dirty" eggs but not in research trials

DDGs and Chicken Layer Diets

- Roberson, 2004
 - Hy-line W36
 - Two 9/10 wk trial
 - Level 0, 5, 10, 15% DDGs
- Lumpkins et al (2003)
 - Hy-line W36
 - 22 wk trial
 - Level and diet energy density
- Field trial Sanfandila (Shurson, 2003)
 - Babcock 300
 - 12 wk trial
 - 10% Norgold DDGs

Laying Hen Study (Roberson, 2004)

- Inconsistent level effects on:
 - Weekly egg production (1 wk of 9 wks)
 - Specific gravity
 - Exp 1 (1 wk of 4)
 - Exp 2 no effect
- No effect on egg weight
- Yolk color (P<.05) in Exp 1 and 2
 - Darker

Roberson Experiment 2 – Yolk Color (9 wks)

DDGS	L*	a*	b*	Roche
0 %	77.9 ^a	2.70 ^d	88.1	8.63 b
5 %	75.9 ^b	4.19 c	86.7	8.98 a
10 %	76.2 ^b	4.74 ^b	87.5	9.02 a
15 %	75.9 ^b	6.1 1 ^a	87.7	9.22 a
SE	0.4	0.19	0.6	0.08
Trt, p<	0.004	< 0.001	0.352	0.001
Linear, p<	0.007	< 0.001	0.846	< 0.001

Summary – Roberson, 2004

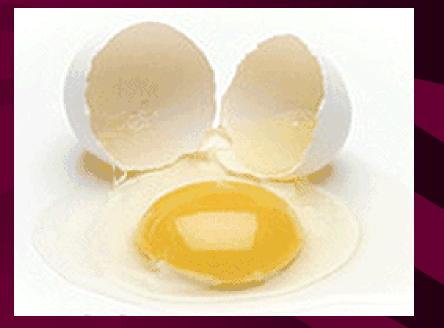
- Corn DDGS can be fed as high as 15% in layer diets using 1250 kcal/lb ME for DDGS without affecting egg production or shell quality
- Yolk color darkened quickly with 10+% DDGS and within 2 mo with 5% DDGS compared to corn-SBM diet

DDGS and Layer Performance (Lumpkins, et al. 2003)

- Treatments
 - 0 or 15% DDGs
 - Energy density (2870 vs 2800 kcal/kg)
- Interaction of DDGs level & diet energy
- Low energy & 15% DDGs slight depression in egg production (lower protein?)
- No differences in any other egg characteristics

DDGs and Layer Diets Egg Production (%) 22-42 wks

Diet Density	DDGs Level (%)		
	0	15	
High	90.2	89.7	
Low	89.2	87.6	


Lumpkins et al., 2003

Sanfandila Field Trial

Performance	Control	Norgold DDGS	P value
EP,%	68.7	72.4	.02
First class	66.2	68.9	.10
EP,%			
EW/hen/wk,	.31	.32	.11
kg			
Cull eggs,%	2.2	3.5	
of total			
Dirty Eggs	1.4	2.2	.002
Yolk color	10.6	10.8	.02

DDGs and Xanthophylls

- Corn 15-25 mg/kg
- Corn Gluten Meal 130-170 mg/kg
- DDGs 15-20 mg/kg
 - SBM replacement in diet

DDGs in Chicken Layer Diets

- Possible source of xanthophyll
- Inclusion level of 15-20%
 - 15% acceptable performance

DDGs in Market Turkey Diets

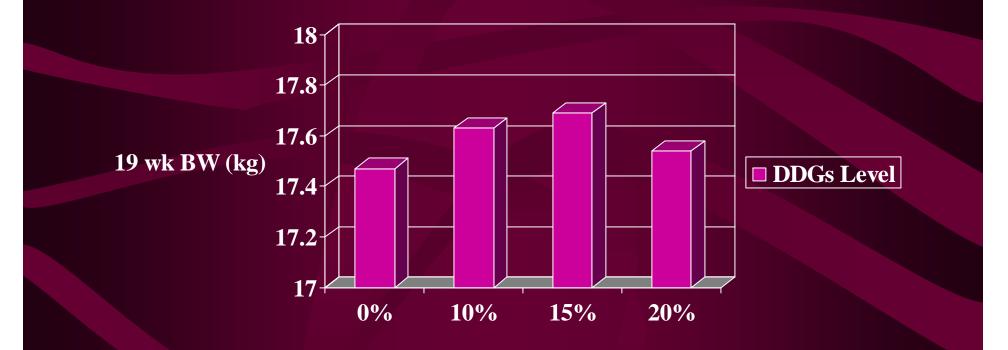
- Early research prior to 1970's – turkey poults to 8 wks
- Levels of 10% similar or improved growth
- Levels of 20% increased feed/gain

Current Market Turkey Research

- Roberson, 2003
 - Hen turkeys grow/finish diets
 - Isocaloric; digestible amino acids
- Noll ongoing 4 experiments
 - Tom turkeys grow/finish diets (5-19 wks)
 - Formulation isocaloric; digestible amino acids

DDGs and Turkey Hen Diets				
DDGs %	BW 105 da, kg	F/G 75-105 da		
Exp. 1				
0	8.53*	2.99		
9	8.41	3.07		
18	8.23	3.21		
27	8.16	3.21		
Exp. 2				
0	8.51	3.44		
7	8.46	3.54		
10	8.50	3.46		

* Significant Linear Component


From: Roberson, 2003

Market Tom Trials-Grow/Finish Diets (University of Minnesota)

Trial*	Trt	DDGs,%	BW, kg	F/G
1	Control	0	18.9	2.44
	DDGs	12-8	19.0	2.48
2	Control	0	19.2	2.64
	DDGs	11-8	19.2	2.65
3	Control	0	18.4	2.67
	DDGS	10	18.3	2.63

*Trial weeks of age; 1=5-19 wks; 2=8-19 wks; 3=11-19 wks

Market Tom Trials-Level of Inclusion UM Trial 4

Amino acid balance

Lysine – 1st limiting

Supplementation with lysine

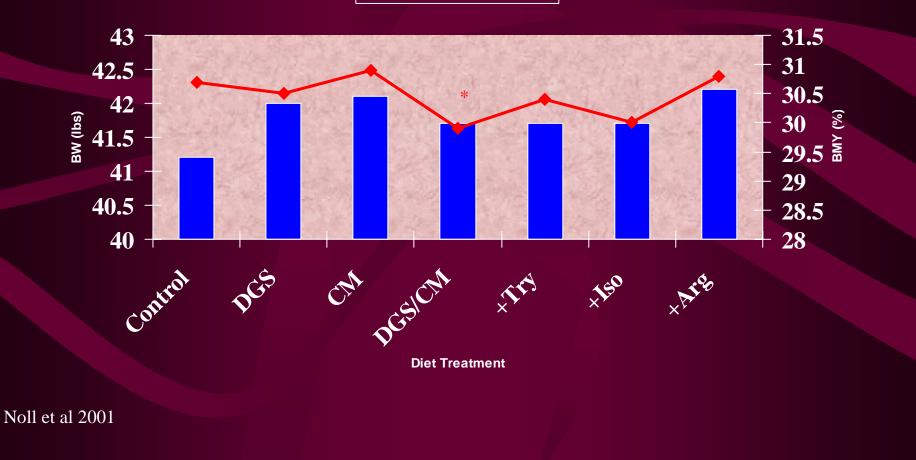
Tryptophan and arginine

Tryptophan supplementation (expensive)
No commercial arginine supplement

Ingredient Amino Acids (% of Protein)

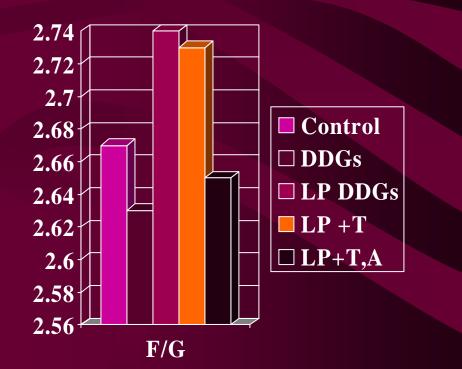
AA	SBM	Corn	MBM	Canola	DDGS
M+C	2.9	4.6	2.6	4.5	3.7
Lys	6.2	3.0	5.1	5.6	2.8
Iso	4.5	3.2	3.0	3.9	3.7
Arg	7.3	5.0	6.4	6.0	3.6
Try	1.6	0.9	0.5	1.3	0.7
Thr	4.0	3.5	3.4	4.4	3.4
Val	4.7	4.8	4.6	5.1	4.8

Study #1. Limiting nature of tryptophan and arginine in DDGs for turkey toms


- Corn soy- meat diet
- Ingredient digestibility
- Formulated to digestible val (reduced CP)
- Isocaloric
- Supplementation with lys, met, thr
- Test diet with DDGs and canola meal
 Calculated deficiencies of try, iso, arg

Study #1 contd

- Treatments
 - -1. Control corn, SBM, MBM
 - -2. As 1 plus DDGS
 - -3. As 1 plus canola
 - -4. As 1 plus DDGS and canola
 - -5. As 4 plus tryp to Trt 1
 - -6. As 4 plus tryp, iso to Trt 1
 - -7. As 4 plus tryp, iso, arg to Trt 1


Study 1. Alternative Ingredients and Amino Acids

BW - BMY

Limiting nature of tryptophan and arginine in DDGs for turkey toms

 Experiment 2 – Lowered protein diet with DDGs resulted in poorer feed conversion – restored with try & arg

DDGs in Market Turkey Diets

- Tryptophan and arginine may become limiting as diet protein levels are reduced
- Inclusion level of 10-20%
 - Hens 10%
 - Toms 15%

Metabolizable Energy

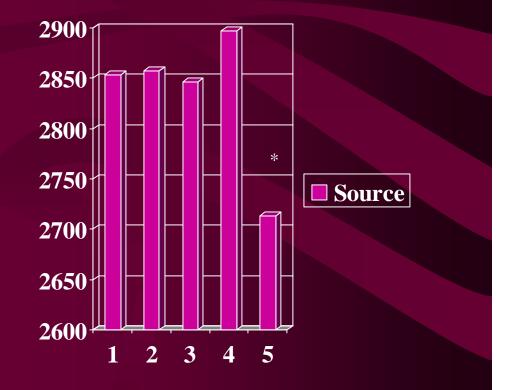
- Importance of energy level
 - Feed conversion
 - Least cost formulation for high energy diets
- AMEn 2480 kcal/kg, 9% fat (NRC, 1994)
 - Current DDGs
 - 10-11% fat
 - 2570 to 2650 kcal/kg
- Potter (1966) 2880 kcal/kg (AMEn)

Metabolizable Energy Value

UM Research trials

AMEn 2810 to 2850 kcal/kg

Roberson (2004)


AMEn Layers 2770 kcal/kg
AMEn Turkey poults 2750 kcal/kg

Batal and Dale (2004) Chicken TMEn

Range 2380 to 3079 kcal/kg
Ave. 2831 kcal/kg

DDGs Source and TMEn (Turkeys)

- Sources (5)
- Samples per source (4)
 - Source Mean
 - 2833 kcal/kg
 - Individual Sample
 Range
 - 2651 to 3186 kcal/kg

Noll et al., 2004

Metabolizable Energy Value

- Noll 2004 Turkey TMEn (20 samples)
 - Range 2651 to 3186 kcal/kg
 - Mean 2833 kcal/kg
- Roberson 2004
 - AMEn 2756 kcal/kg
- Batal and Dale 2004 Chicken TMEn
 - Range 2380 to 3079 kcal/kg
 - Ave. 2831 kcal/kg

DDGs and Energy Level

DDGs ME Kcal/kg	Fat Cost \$/100 lbs	% DDGs Inclusion \$4/100 lbs	DDGs Opportunity Cost, \$/100 Ibs	
2810	11	10		
2810	15	10		
2480	11	0	3.82	
2480	15	0	3.34	

Availability of Phosphorus

Ingredient	P, %	P, avail. %	% P Avail.
Corn*	.28	.08	28
SBM*	.62	.22	35
DDGs*	.72	.39	54
DDGs (UGA)	.74	~.47	61-68 (64)
DDGs(UI)	.73	~.6	69-102 (82)
DDGs (MSU)			76-85 (80)

*NRC, 1994

Economics and DDGs Quality

Comparison of DDGS Total Amino Acids (Digestible)

	Hi Dig Lys	Lo Dig Lys
	26.4	27.8
Met	.49(.43)	.51(.44)
Cys	.53(.42)	.49(.32)
Lys	.81(.64)	.72(.46)
Thr	1(.82)	1.03(.75)
Tryp	.24(.19)	.2(.16)

Influence of digestible lysine on value of DDGs (\$/cwt)

	High dAA	Low dAA
Corn, 3.10	4.78	4.28
C orn, 3.50	5.00	4.54
Corn, 5.30	6.02	5.70
SBM, 8.25	5.00	4.54
SBM, 8.70	5.21	4.72

Recommendations for Use of DDGs

- Corn DDGs (to 15%) can be fed to chicken layers and broilers; Turkeys - to 10% of diet
- Formulate with minimums for tryptophan and arginine, especially as diet protein is decreased
- Formulate on basis of digestible amino acid content
- Consider AMEn value of 2750 to 2850 kcal/kg
- Increase available phosphorus (higher than NRC '94) 65%

University of Minnesota DDGS Webpage

• www.ddgs.umn.edu

Acknowledgments UM Turkey Research Program

- University of Minnesota staff-Jeanine Brannon, Fred Hrbek, Sheila Groth
- MTGA Nutrition Subcommittee- Virgil Stangeland, George Speers, Jim Halvorson, Gary Johnson, Dick Nelson, Hermann Klein Hessling, Greg Engelke
- University of Illinois Carl Parsons
- Funding Minnesota Turkey Research & Promotion Council, ADM, Heartland Lysine, Minnesota Corn Growers, Midwest Ethanol Cooperative