Feed Manufacturing with DDGS

Kim Koch, Ph.D. Northern Crops Institute

United States Ethanol Outlook

Dry-Milling Average Yield Per Bushel of Corn

Ethanol 2.7 gal. (10.2 liters); CO₂ 18 lbs. (8.2 kg); DDGS 18 lbs. (8.2 kg) •Every gallon of ethanol produced = 6.67 lbs. (3.02 kg) of DDGS •Current estimate is ?? million gallons = ??? mmt of DDGS

What is DDGS?

DDGS is a by-product of fuel ethanol production

- Typically from a dry-grind facility
 - > Whole kernel processing
- Nutrient content of DDGS depends on the grain source
 - Corn DDGS Midwest US
 - Wheat DDGS Canada
 - Sorghum (milo) DDGS Great Plains US
 - Barley DDGS Canada/US
- Other by-products
 - DDGS from beverage alcohol whiskey distilleries (dry grind)
 - Corn gluten feed high fructose corn syrup, starch (wet mill)
 - Corn gluten meal high fructose corn syrup, starch (wet mill)
 - Brewer's grains (wet/dry) beer production (dry grind)
- Nutrient profile of by-products from dry-mill, wet-mill, and beverage alcohol production is different

from Shurson, 2006

Dry-Grind Ethanol By-Products used by Livestock (Poultry)

- Wet distiller's grains
 - Fed primarily to beef, some dairy Total Mixed Rations (TMRs)
- Dry distiller's grains (DDG)
 - Fed to beef and dairy concentrates
- Wet distiller's grains with <u>solubles</u> (WDGS)
 - Fed to beef and dairy TMRs
- Dried distiller's grains with <u>solubles</u> (DDGS)
 - Fed to dairy, swine, poultry, some beef concentrates, complete feeds

Modified wet cake (blend of wet and dry distiller's grains)

- Fed primarily to beef, some dairy TMRs
- Condensed distiller's solubles (CDS)
 - Fed to beef and dairy TMRs
 - Ontario, Canada swine liquid feeding system

from Shurson, 2006

DDGS Physical Characteristics

Knott, Shurson and Goihl

- Bulk Density
 - Average = <u>45.9 kg/hl</u>
 - Range 39.6 50.6 kg/hl
- Particle Size
 - Average = <u>1,282 microns</u>
 - Range 612 2,125 microns

✤ Koch

- Bulk Density
 - Average = <u>48.4 kg/hl</u>
 - Range 45.4 51.3 kg/hl
- Particle Size
 - > Average = <u>588 microns</u>
 - Range 387 810 microns

DDGS Physical Characteristics

Angle of Repose * Similar to Dehy Alfalfa, corn bran, dry malt > Range 40 - 80°

DDGS Nutrient Characteristics

> Range 5.8 – 9.1	≻ Range 5.5 – 16.0
Average = 6.9	Average = 10.0
• Fiber	• Fiber
➢ Range 9.2 – 11.6	➢ Range 8.1 – 10.2
Average = 10.0	Average = 9.2
• Fat	• Fat
➢ Range 24.54 – 28.4	> Range 26.3 – 29.9
Average = 26.6	Average = 27.6
 Protein 	 Protein
Knott, Shurson and Goihl	✤ Koch

DDGS - Handling

DDGS sets up in rail cars, trucks, containers, barges, (ocean-going vessels ?)

DDGS will set up more than once
 Will set up in silos and bins

Currently no flow agents have been found that completely correct the flow/handling problems associated with DDGS

Some may reduce unloading time
 From 10 hrs to 5 hrs

Some reports that "New" generation products improve handling characteristics

Practical issues with DDGS Used in Feed Manufacturing

Product is Inconsistent – Unpredictable

- Nutrient content
 - Protein, Fat, Fiber, Moisture, etc.
- Nutrient digestibility
 - esp. for lysine
- Physical Characteristics
 - >Bulk density, Particle size, Angle of Repose
- Logistics

Multiple producers, brokers/consolidators, shippers

Handling

Flowability – flat storage is recommended

- Availability
 - Price
- Mycotoxins

High fiber limits its maximum inclusion level in poultry feed

Decreased pellet quality

- Depends on physical and nutrient characteristics of DDGS
 - Fat, fiber, protein, moisture
 - Particle size, density
- Depends on ingredients
 Some are complementary
- Depends on pellet mill operation
 - Conditioning time and temp
 - Die speed slow down
 - Die specifications
 - Performance ratio

♦ Koch

DDGS and Durum wheat midds

Increasing DDGS from 0 – 50%

- A 35% increase in amperage
- A 41% increase in kilowatts
- A 15.5% increase in kwh/mt
- A 3% decrease in pellet quality measured as Pellet Durability Index (PDI)
- An 11% decrease in pellet bulk density

Increased energy use

- Added \$0.11/mt to production costs
- Decreased pellet quality
 - may cause reduced feed efficiencies
 - Increased transportation costs

Koch

- DDGS and barley malt sprouts
 Increasing DDGS from 0 30%
 - A 40% decrease in amperage
 - A 40% decrease in kilowatts
 - A 47% decrease in kwh/mt
 - A 3% decrease in pellet quality measured as Pellet Durability Index (PDI)
 - A 10% decrease in pellet bulk density

Decreased energy use

- saved \$0.65/mt in production costs
- Decreased pellet quality
 - may cause reduced feed efficiencies
 - Increased transportation costs

- DDGS, Durum wheat midds and dry peas
 DDGS at 20%, peas at 20%, midds at 60%
 - Compared to 100% midds
 - o 40% increase in amps
 - o 42% increase in kw
 - o 13% increase in kwh/mt
 - o 0.5% increase in PDI
 - Compared to 60% midds, 40%DDGS
 - o 21% increase in amps
 - o 18% increase in kw
 - o 7.6% increase in kwh/mt
 - o 2% increase in PDI

♦ Koch

- DDGS, Durum wheat midds and dry peas
 DDGS at 30%, peas at 20%, midds at 50%
 - Compared to 100% midds
 - o 43% increase in amps
 - o 46% increase in kw
 - o 15% increase in kwh/mt
 - o 0.8% decrease in PDI
 - Compared to 50% midds, 50%DDGS
 - o 6% increase in amps
 - o 3% increase in kw
 - o 2% increase in PDI
 - o 1% decrease in kwh/mt

DDGS and High Shear Conditioning

Alteration of protein and fiber

- Operate at greater temperature, pressure and moisture than pellet mills
 - Low bulk density materials (DDGS) do not absorb moisture readily in pellet mill conditioner
 - > High natural protein materials (DDGS) becoming "gummy" when moisture addition exceeds 4% and plasticize at temperatures in excess of 63° C

Things to Remember

DDGS is a by-product of fuel ethanol production

Typically corn – but can be from other cereals

Physical characteristics of DDGS are dissimilar

 Bulk density, particle size and angle of repose are not uniform

Nutrient content of DDGS depends on the grain source

Changes nutrient value

The above alter performance of pellet mills and other feed manufacturing equipment

Fundamentals of pellet production

Die – Roller interaction

- Feed on the die face must be compressed and extruded through the die holes during successive rotations
 - Excess moisture (> 17%) in the feed will cause the roll to slip
 - Resist compression
 - Materials high in natural protein and low bulk density are difficult to pellet
 - DDGS become "gummy" with the addition of moisture > 4%
 - DDGS do not absorb steam well

Fundamentals of pellet production

- In order to make pellets must have all forces balanced
 - Moisture, fat, fiber and protein have important role in pellet production
 - If slip-resisting force greater than roll force material will not compress
 - Caused by moisture, fat, protein
 - If flow resisting force greater than roll force material will not extrude
 - Caused by fiber, particle size

Fundamentals of pellet production

Feed material is compressed into the die hole and extruded through the effective length.

- Factors that determine Pellet Quality
 - Performance ratio (d/L)
 - Compression ratio (D/d)

