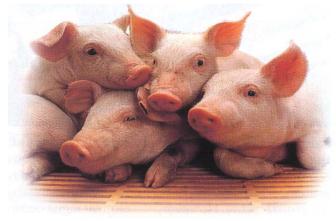
What We Know about Feeding Dried Distillers Grains with Solubles (DDGS) to Swine

Dr. Jerry Shurson

Professor

Department of Animal Science


University of Minnesota

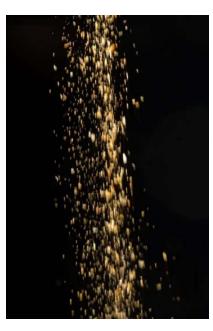
Overview

- U.S. DDGS production and usage levels in pork production
- Nutrient composition and digestibility of DDGS for swine
- DDGS quality issues
- Effects of feeding DDGS diets
 - Weaned pigs
 - Grower-finisher pigs
 - growth performance
 - carcass composition
 - pork fat and lean quality
 - gut health
 - manure management
 - Sows
- Key points

U.S. DDGS Production

- Currently ~ 201 ethanol plants (+12 under construction, 6 in expansion)
 - Industry is operating at 88% of total production capacity
 - Majority are dry-grind vs. wet mill
 - Common sizes
 - 40 to 100 million gallons ethanol produced/yr
 - Plants operate 354 days/yr
 - 100 million gal. plants produce 6,200 tons of DDGS/week
 - Plant storage capacity for DDGS is < 1 wk
- 2009 25.5 million metric tonnes
 - 64% dried vs. 36% wet (cattle feed)
 - ~16% fed to swine

Maximum Inclusion Rates of DDGS in Swine Diets (Based Upon University Trials)


- Nursery pigs
 - Up to 30%
- Grow-finish pigs
 Op to 30%
- Gestating sows
 Up to 50%
- Lactating sows
 Up to 30%

Assumptions: no mycotoxins formulate on a digestible amino acid and available P basis

Current U.S. Pork Industry Ranges in Dietary DDGS Inclusion Rates and Estimated Usage

- 70 80% of MN pork producers are using DDGS
- Grower-finisher diets ~ 80-85%
 - 10 40% of the diet
 - Save \$3 to \$10/ton for each 10% DDGS added to the diet
 - Save \$3 to \$9/market hog
- Sow diets ~ 10-15%
 - Gestation 10 90% of the diet
 - Lactation 10 30% of the diet
- Late nursery diets < 5%
 - Added at 5 30% of the diet

Nutritional Characteristics of DDGS for Swine

- DDGS ME = corn ME
- Amino acid content and digestibility are variable among sources
 - Total lysine (0.61-1.06% DM basis)
 - Standardized true lysine digestibility (44 67%)
- High digestible P
 - Reduce diet inorganic P supplementation
 - May reduce manure P excretion
- Partially replaces some corn, soybean meal, and inorganic phosphate and reduces diet cost

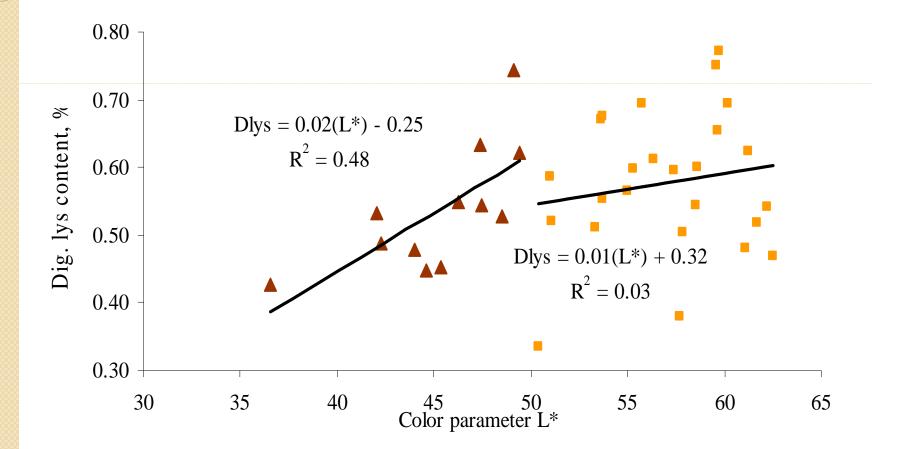
Averages, Coefficients of Variation, and Ranges of Selected Nutrients Among 32 U.S. DDGS Sources (100% Dry Matter Basis)

Nutrient	Average	Range Var	iation
Dry matter, %	89.3	87.3 – 92.4	5.8
Crude protein, %	30.9 (4.7)	28.7 – 32.9	14.6
Crude fat, %	10.7 (16.4)	8.8 – 12.4	<i>41 %</i>
Crude fiber, %	7.2 (18.0)	5.4 – 10.4	<i>92 %</i>
Ash, %	6.0 (26.6)	3.0 – 9.8	226
Swine ME, kcal/kg	3810 (3.5)	3504 – 4048	15.5
Lysine, %	0.90 (11.4)	0.61 – 1.06	73
Phosphorus, %	0.75 (19.4)	0.42 – 0.99	135
	Shurson UMN		 ⁄⁄

%

Shurson.UMN

DDGS Color and Digestibility Varies Among DDGS Sources


Less Digestible DDGS High Quality, Highly Digestible DDGS

The Old Evaluation Criteria are Inadequate

Relationship Between Lightness of Color (L*) and Digestible Lysine Content of Corn DDGS

New Nutritional "Tools" Are Available to Manage Nutrient Variability Among DDGS Sources

- Assess relative value among sources
- Provide accurate nutrient loading values for diet formulation

Examples:

- Cargill Reveal®
- Value Added Science and Technology Illuminate®

Illuminate[®] Nutrient Loadings and Relative Value Comparison Among 5 DDGS Sources

	Α	В	С	D	E
ME	3070	3460	2970	3410	3540
Dig. Lys	0.54	0.52	0.54	0.61	0.54
Dig. Met	0.50	0.47	0.49	0.48	0.46
Dig.Thr	0.70	0.68	0.70	0.72	0.68
Dig.Trp	0.16	0.15	0.16	0.16	0.14
Avail. Phos	0.67	0.50	0.62	0.56	0.64
Relative Value	\$175	\$204	\$165	\$208	\$215

DDGS Quality

- Are there concerns about...
 - Mycotoxins?
 - Antimicrobial residues?
 - Need for antioxidants?
 - Flowability?
 - Pelleting?

Presence of Mycotoxins in DDGS Samples from 14 Ethanol Plants in 7 States in the Midwest U.S.

Mycotoxin	Ν	Minimum Level	Maximum Level	Average Level	% Samples Above Lowest FDA Level
Aflatoxin, ppb	20	< 1	3.7	0.7	0 %
DON, ppm	20	< 0.1	1.2	0.3	0 %
Fumonisin, ppm	20	< 0.1	8.6	1.9	10 %
T-2 toxin, ppm	20	< 0.1	< 0.1	0.0	NA
Zearalenone, ppm	20	< 0.05	0.14	0.04	NA

NCERC (2008)

Presence of Mycotoxins in DDGS Samples from 4 Midwestern U.S. Ethanol Plants (2008)

Mycotoxin	N	Minimum Level	Maximum Level	Average Level	% Samples Above Lowest FDA Level
Aflatoxin, ppb	77	< 1	1.1	0.01	0 %
DON, ppm	77	0.2	1.9	0.5	0 %
Fumonisin, ppm	77	< 0.2	7.2	2.7	10 %
T-2 toxin, ppm	77	Not available	Not available	Not available	NA
Zearalenone, ppm	77	< 0.2	< 0.2	0.0	NA

Antimicrobial Residues?

- Virginiamycin (Lactrol) is the only FDA approved antimicrobial for use in ethanol production
 - FDA issued a letter of no objection 11/16/93
 - Added at rate of 2-6 ppm in the fermentation phase
 - Controls bacterial infections
 - Approved swine feed usage rate for Stafac is 5-100 g/ton of feed
 - Is destroyed by high temperatures (< 93° C during ethanol production
 - Dryer temperatures range from 93 to 232° C

Antibiotic Residues?

- 2008 FDA multi-state sampling survey
 - antibiotic residues were detected in 24 of 45 samples (53%)
 - I5 of the 45 samples contained residues of virginiamycin (33%)
 - 27 % contained residues of erythromycin
 - 11 % contained residues of tylosin
 - A multi-analyte residue detection method was used by FDA to detect antibiotic residues as low as 0.1 ppm (dry matter basis)

Fat Stability of DDGS in Hot, Humid Conditions

Analysis	Week 1	Week 10
Peroxide value, mEq/kg	0.70	0.60
Free fatty acids, % of oleic	11.2	16.2

Peroxide values < 5 mEq/kg are considered acceptable for fat quality and there is no oxidative rancidity.

DDGS Flowability and Pelleting

- Flowability
 - Can be a problem and varies among sources
 - Low moisture (< 10%) improves flowability
 - Flow agents have not improved flowability
 - CaCO₃
 - DMX-7
 - Zeolite
- Pelleting
 - Durability index decreases
 - Throughput of pellet mills is reduced

Feeding High Quality DDGS to Weaned Pigs

Summary of Growth Performance Effects of Feeding Levels up to 30% DDGS in Weanling Pig Diets

Performance				Not
Measure	Ν	Increased	Reduced	changed
ADG	10	0	0	10
ADFI	10	0	2	8
G:F	10	5	0	5

Feeding DDGS to Grower-Finisher Pigs

Summary of Growth Performance Responses from Feeding Levels up to 30% DDGS in Grower-Finisher Diets

Performance Measure	N	Increased	Reduced	Not Changed
ADG	25	1	6	18
ADFI	23	2	6	15
Gain/Feed	25	4	5	16

Summary of Carcass Characteristic Responses from Feeding Levels up to 30% DDGS in Grower-Finisher Diets

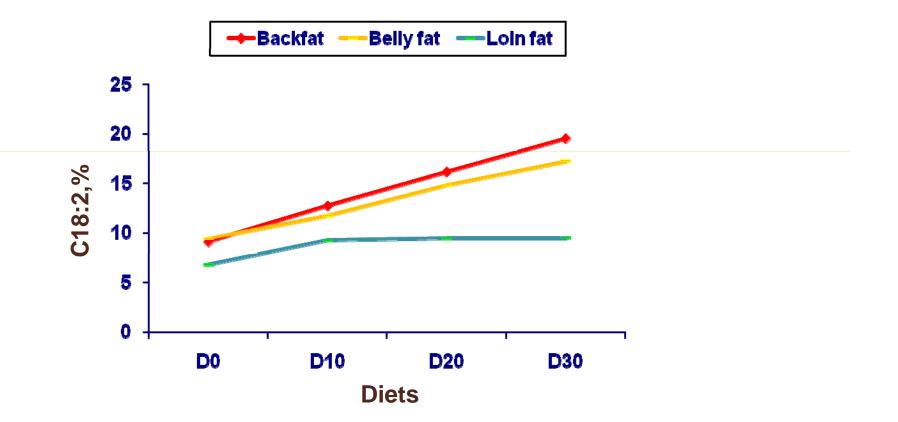
Performance Measure	N	Increased	Reduced	Not Changed
Dressing %	18	0	8	10
Backfat Thickness	15	0	1	14
Loin Depth	14	0	2	12
% Carcass Lean	14	0	1	13

Summary of Belly Quality Characteristics from Feeding Levels up to 30% DDGS in Grower-Finisher Diets

Performance Measure	N	Increased	Reduced	Not Changed
Belly thickness	4	0	2	2
Belly firmness	3	0	3	0
Iodine value	8	7	0	1

Comparison of Selected Nutrients in Corn DDGS and Corn (As Fed Basis)

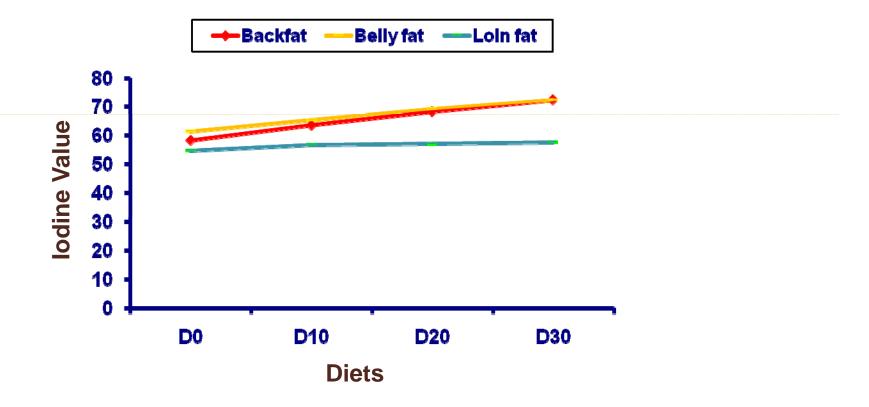
Nutrient	Corn DDGS	Corn
Swine ME, kcal/kg	3,390	3,420
Crude fat, %	9.6	3.9
Linoleic acid (C18:2), %	5.32	1.92
Oleic acid (C18:1), %	2.47	0.94


Muscle Quality is Not Affected by Feeding DDGS Diets to Grower-Finisher Pigs

- No effects on muscle:
 - Color
 - Firmness
 - Marbling
 - Ultimate ph
 - Drip loss
 - Cooking loss
 - Tenderness

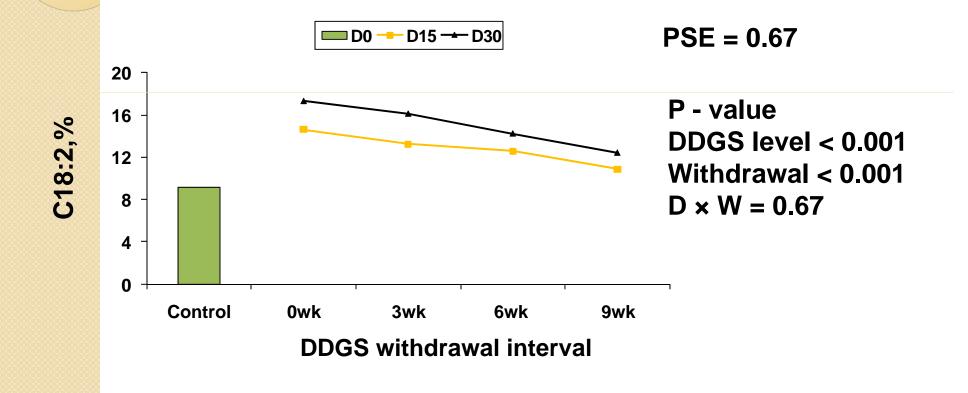
Current Pork Fat Quality Standards

- Based on Iodine Value (IV)
 - ratio of unsaturated:saturated fatty acids
- Maximum IV
 - 70 Danish Meat Research Institute
 - 70 National Pork Producers Council
 - 74 Boyd et al. (1997)
- Various adipose tissue sites are affected differently by dietary fatty acid composition

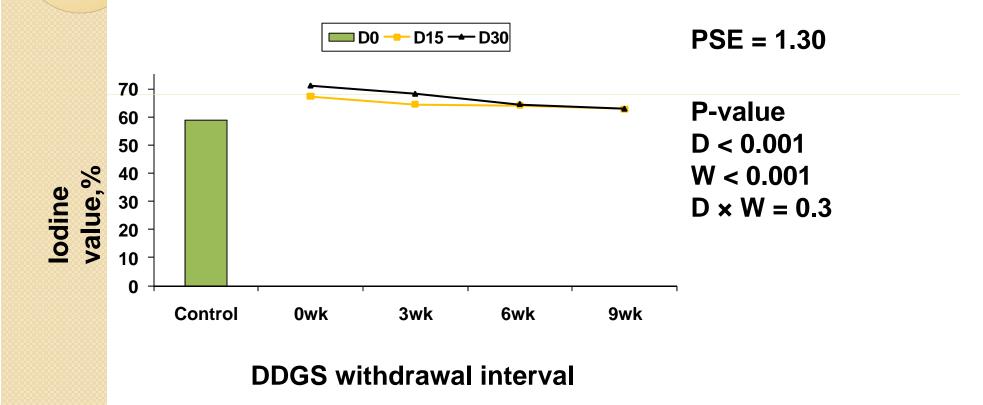

Effect of Dietary DDGS Level on Linoleic Acid (CI8:2) Content of Pork Fat

Linear effect of DDGS level for all fat depot sites (P < 0.01) Diet × site (P < 0.01)

29


Effect of Dietary DDGS Level on Iodine Value of Pork Fat

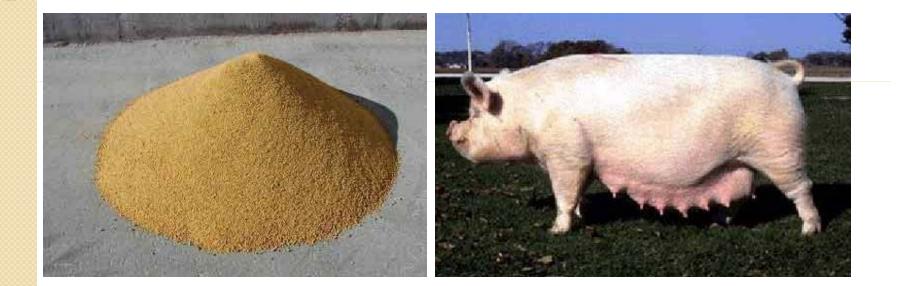
Linear effect of DDGS level for all fat depot sites (P < 0.01) Diet × site (P < 0.01)


30

Effects of Dietary DDGS Level and Withdrawal Interval on C18:2 Content of Belly Fat

All treatments > control (P < 0.05)

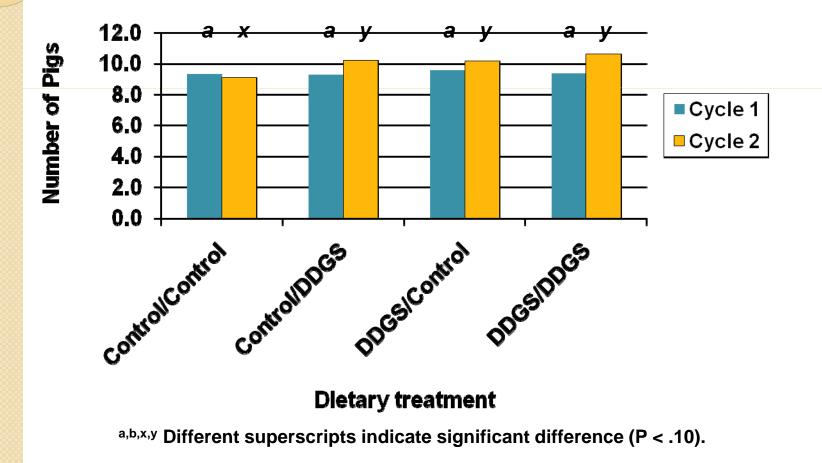
Effects of Dietary DDGS Level and Withdrawal Interval on IV of Belly Fat



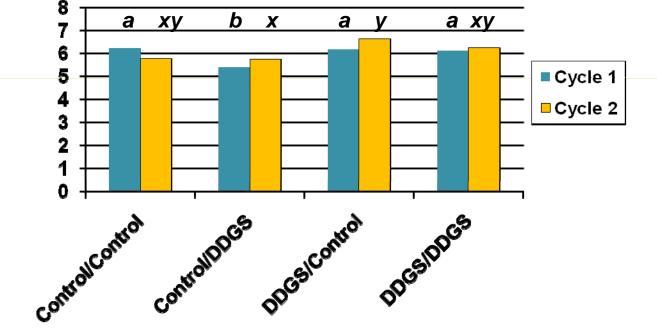
D15-9 wk and D30-9 wk = control, others > control (P < 0.05)

Summary of the Effects of Feeding DDGS Diets on Pork Quality

- Bellies will be less firm
 - Increased iodine value (linoleic acid content)
- Bacon will have an oily appearance from pigs fed > 20% DDGS diets
- Belly thickness may or may not be affected
- **Shelf life** and fat oxidation in fresh pork loins is **unaffected** with typical retail storage conditions for 28 days.
- Muscle quality is not affected
- Consumer taste panel acceptability is unaffected
 - Cooked pork loin
 - Cooked bacon
- Backfat iodine value of 70 can be met when feeding 30% DDGS in growing-finishing and withdrawing it 3 wks pre-harvest


Feeding DDGS to Sows

Producer Perceptions and Observations


- Perception
 - DDGS is a risky ingredient because of mycotoxin concerns
 - Has limited DDGS use compared to potential
- Observations
 - Increased lactation feed intake
 - Sows are more content
 - Fewer constipation problems

Effect of Feeding 0 or 50% DDGS Gestation Diets and 0 or 20% DDGS Lactation Diets on Pigs Weaned/Litter (Wilson et al., 2003)

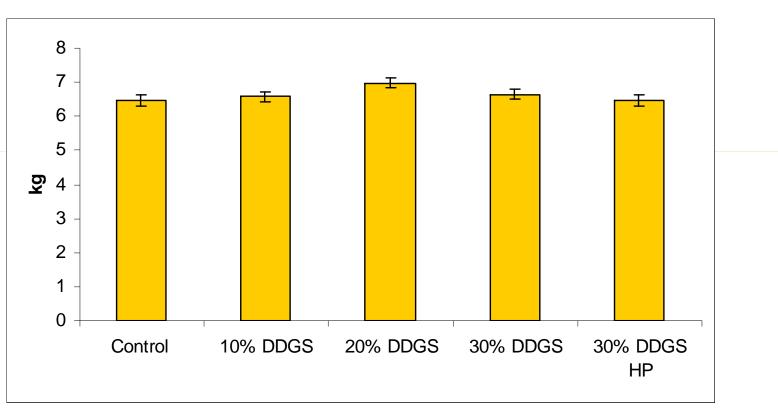
Effect of Dietary Treatment Combination on Sow Lactation ADFI (Wilson et al., 2003)

Dietary Treatment

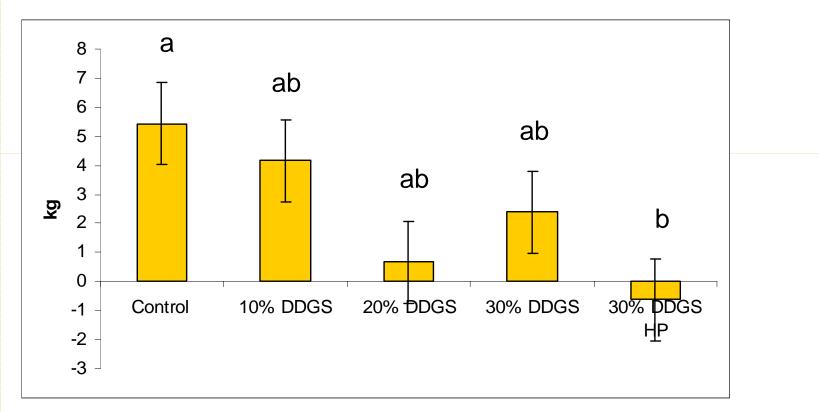
^{a,b,x,y} Different superscripts indicate significant difference (P < .10).

Effects of Feeding up to 30% DDGS to Lactating Sows (Song et al., 2006)

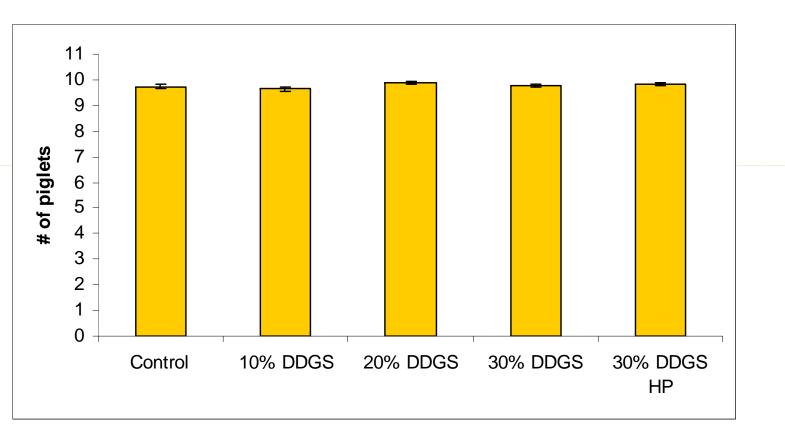
- 307 mixed parity sows
 - Group housed = 147 sows
 - Individual crates = 160 sows
- English Belle, GAP genetics, Winnipeg, MB, Canada
- Average initial weight of about 490 lbs



Group housing


Individual housing

Effect of Increasing Dietary DDGS Level on Sow ADFI in Lactation

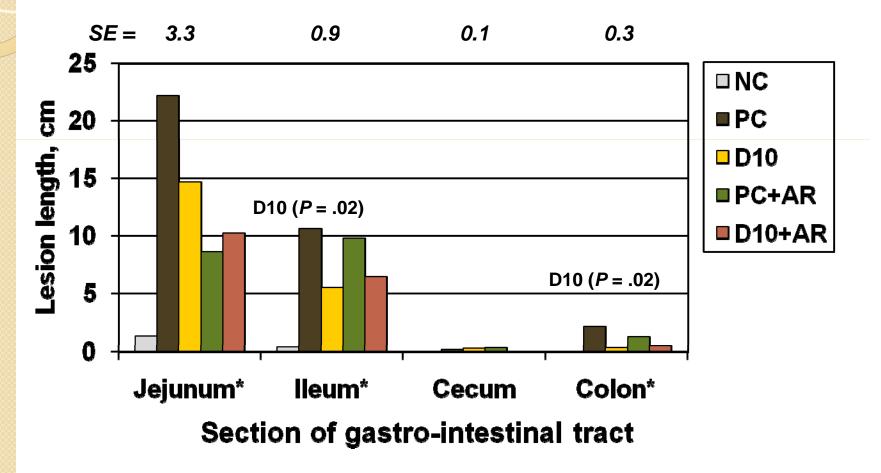

No significant difference (P = 0.10)

Effect of Increasing Dietary DDGS Level on Sow Body Weight Change

 a,b Means with different superscripts are significantly different (P < 0.05)

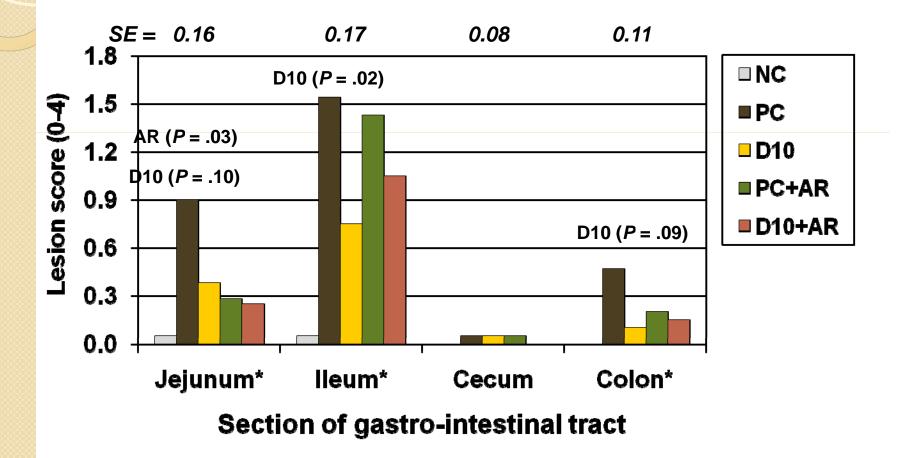
Effect of Increasing Dietary DDGS Level on Litter Size at Weaning

No significant difference (P = 0.31)

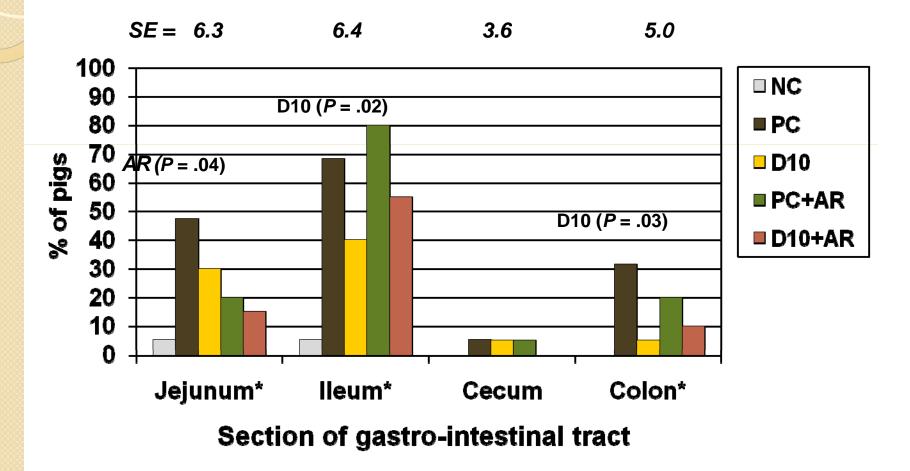

Summary

- Inclusion of up to 30% DDGS in sow lactation diets did not affect:
 - Sow and litter performance
 - Digestible and metabolizable energy
 - Nitrogen retention and digestibility
 - Milk nitrogen and fat concentration

Does Feeding DDGS Improve Gut Health of Growing Pigs?



Effect of Dietary Treatment on Lesion Length (21 d Post-Challenge)


^{*} Effect of disease challenge (P < .01).

Effect of Dietary Treatment on Lesion Severity (21 d Post-Challenge)

^{*} Effect of disease challenge (*P* < .01).

Effect of Dietary Treatment on Lesion Prevalence (21 d Post-Challenge)

^{*} Effect of disease challenge (P < .01).

Effects of Feeding DDGS Diets on Swine Manure Characteristics

Effects of Feeding Diets Containing DDGS on Manure Nutrient Composition, Gas and Odor Emissions

• Fecal excretion increases

• Decrease in dry matter digestibility

• Urine excretion not affected

No effect on water disappearance

N excretion increases

- Increased dietary crude protein (N)
- Minimized by using synthetic amino acids

• P excretion may vary

- Reduced when feeding < 20% DDGS + phytase and formulating on available P basis
- Increased when feeding > 20% DDGS due to excess dietary P

• No effect on:

- Hydrogen sulfide
- Ammonia
- No effect on odor detection levels

Key Points

• DDGS

- an excellent alternative ingredient
- dramatically reduces production costs
- maintain acceptable performance
 - up to 30% in all phases of production
 - up to 50% in gestation
- new "tools" allow:
 - accurate value assessments among sources
 - accurate nutrient loading values by source to manage nutrient variability

Key Points

- DDGS challenges
 - flowability

• pelleting

• pork fat quality

 meeting "natural" pork claims due to undefined regulations on "antibiotic-free"

Key Points

Additional benefits

- Feeding diets containing DDGS
 - Appears to improve gut health of grower-finisher pigs in some situations
 - Can reduce manure P levels with the use of phytase
 - May improve litter size weaned when fed at high levels to gestating and lactating sows
 - SIGNIFICANTLY REDUCES FEED COST AND TOTAL COST OF PRODUCTION!

University of Minnesota DDGS Web Site www.ddgs.umn.edu

We have developed a DDGS web site featuring:

- * nutrient profiles and photos of DDGS samples
- * research summaries
 - swine, poultry, dairy, & beef
 - DDGS quality
- * presentations given
- * links to other DDGS related web sites
- * international audiences

