Benefits and Limitations of Feeding DDGS to Grower-Finisher Pigs

Dr. Jerry Shurson Professor

Department of Animal Science University of Minnesota

Overview

- U.S. DDGS production and usage levels in pork production
- Nutrient composition and digestibility of DDGS for swine
- DDGS quality issues
- Effects of feeding DDGS diets on:
 - growth performance
 - carcass composition
 - pork fat and lean quality
 - gut health
 - manure management

• Opportunities for using liquid distiller's by-products

U.S. DDGS Production

- Currently ~ 165 ethanol plants in the U.S.
 - Majority are dry-grind vs. wet mill
 - Common sizes
 - 40 to 100 million gallons ethanol produced/yr
 - Plants operate 354 days/yr
 - 100 million gal. plants produce 6,200 tons of DDGS/week
 - Plant storage capacity for DDGS is < 2 weeks
- 2007 14.6 million metric tonnes
 - 64% dried vs. 36% wet (cattle feed)
 - 11% fed to swine

Maximum Inclusion Rates of DDGS in Swine Diets

(Based Upon University Trials)

- Nursery pigs (> 7 kg)
 - Up to 30%
- Grow-finish pigs
 - Up to 30%
- Gestating sows
 - Up to 50%
- Lactating sows
 - Up to 30%

Assumptions: no mycotoxins

formulate on a digestible amino acid and available phosphorus basis

Current U.S. Pork Industry Ranges in Dietary DDGS Inclusion Rates and Estimated Usage

- Grower-finisher diets ~ 80-85%
 - 10 40% of the diet
- Sow diets ~ 10-15%
 - Gestation 10 90% of the diet
 - Lactation 10 30% of the diet
- Late nursery diets < 5%
 - Added at 5 30% of the diet

Nutritional Characteristics of DDGS for Swine

- DDGS Metabolizable Energy = corn ME
- Amino acid content and digestibility are variable
 - Total lysine (0.61-1.06% DM basis)
 - Standardized true lysine digestibility (44 67%)
- High digestible P
 - Reduce diet inorganic P supplementation
 - May reduce manure P excretion
- Partially replaces some corn, soybean meal, and inorganic phosphate and reduces diet cost

Quick Calculation of Feed Cost Savings

Thumb rule:

Additions/1000 kg diet

+ 100 kg DDGS x _____ \$/kg = \$_____ + 1.5 kg limestone x _____ \$/kg = \$_____ TOTAL ADDITIONS (A)

Subtractions/1000 kg diet

- 88.5 kg corn x _____ \$/kg = \$_____
- 10 kg SBM (44%) x _____ \$/kg = \$_____
 3 kg dical. phos. x _____ \$/kg = \$_____ TOTAL SUBTRACTIONS (S)

(S - A) = Feed cost savings/ton by adding 10% DDGS to the diet

Nutrient Composition Comparison of Corn, Sorghum, Corn DDGS, and Sorghum DDGS (As-fed Basis)

	Corn	Sorghum	Corn DDGS	Sorghum DDGS
Gross energy, kcal/kg	3,891	3,848	4,776	4,334
ME, kcal/kg	3,420	3,340	3,507	3,287
Crude protein, %	8.0	9.8	27.5	31.0
Crude fat, %	3.3	2.9	10.2	7.7
NDF, %	7.3	7.3	25.3	34.7
ADF, %	2.4	3.8	9.9	25.3
Ash, %	0.9	0.8	3.8	3.6

Amino Acid and Mineral Composition Comparison of Corn, Sorghum, Corn DDGS, and Sorghum DDGS (As-fed Basis)

	Corn	Sorghum	Corn DDGS	Sorghum DDGS
Lysine, %	0.24	0.20	0.78	0.68
Methionine, %	0.21	0.18	0.55	0.53
Threonine, %	0.26	0.29	1.06	1.07
Tryptophan, %	0.09	0.07	0.21	0.35
Valine, %	0.38	0.48	1.35	1.65
Isoleucine, %	0.28	0.37	1.01	1.36
Calcium, %	0.01	0.01	0.03	0.03
Phosphorus, %	0.22	0.24	0.61	0.64

Standardized Ileal Digestibility of Amino Acids in Corn, Sorghum, Corn DDGS, and Sorghum DDGS (As-fed Basis)

	Corn	Sorghum	Corn DDGS	Sorghum DDGS
Lysine, %	72	57	62	62
Methionine, %	85	69	82	75
Threonine, %	74	64	71	68
Tryptophan, %	70	57	70	70
Valine, %	79	64	75	72
Isoleucine, %	81	66	75	73

DDGS Color and Digestibility Varies Among DDGS Sources

Relationship Between Lightness of Color (L*) and Digestible Lysine Content of Corn DDGS

Comparison of Phosphorus Level and Relative Availability of DDGS for Swine (As-fed Basis)

	High Quality DDGS	DDGS NRC (1998)	Corn NRC (1998)
Total P, %	0.78	0.73	0.25
	Range		
	0.62-0.87		
P Availability, %	90	77	14
	Range		
	88-92		
Available P, %	0.70	0.56	0.03

Diet Composition When 18.8% DDGS and Phytase are Added to a Swine Grower Diet

Ingredient	Corn-SBM-1.5 kg Lysine	18.8% DDGS + Phytase
Corn, kg	798.3	636.3
Soybean meal 44%, kg	176.9	159.4
DDGS, kg	0.0	188
Dicalcium phosphate, kg	11.6	0.0
Limestone, kg	7.2	9.8
Salt, kg	3.0	3.0
L-lysine HCl, kg	1.5	1.5
VTM premix, kg	1.5	1.5
Phytase, 500 FTU/kg	0.0	0.5
TOTAL, kg	1000.0	1000.0

DDGS Quality

- Are there concerns about...
 - Mycotoxins?
 - Antimicrobial residues?
 - Need for antioxidants?
 - Flowability?
 - Pelleting?

Presence of Mycotoxins in DDGS Samples from 14 Ethanol Plants in 7 States in the Midwest U.S. (NCERC, 2008)

Mycotoxin	Ν	Minimum Level	Maximum Level	Average Level	Percentage of Samples Above Lowest FDA Level
Aflatoxin, ppb	20	< 1	3.7	0.7	0 %
Deoxynivalenol, ppm	20	< 0.1	1.2	0.3	0 %
Fumonisin, ppm	20	< 0.1	8.6	1.9	10 %
T-2 toxin, ppm	20	< 0.1	< 0.1	0.0	NA
Zearalenone, ppm	20	< 0.05	0.14	0.04	NA

Presence of Mycotoxins in DDGS Samples from a Midwestern U.S. Ethanol Plant (2/06 – 11/07)

Mycotoxin	Ν	Minimum Level	Maximum Level	Average Level	Percentage of Samples Above Lowest FDA Level
Aflatoxin, ppb	69	< 1	2.6	0.08	0 %
Deoxynivalenol, ppm	69	< 0.1	1.4	0.6	0 %
Fumonisin, ppm	69	0.12	5.9	2.3	3 %
T-2 toxin, ppm	69	< 0.1	< 0.1	0.0	NA
Zearalenone, ppm	69	< 0.05	0.1	0.03	NA

Presence of Mycotoxins in DDGS Samples from 4 Midwestern U.S. Ethanol Plants (2/08 – 7/08)

Mycotoxin	Z	Minimum Level	Maximum Level	Average Level	Percentage of Samples Above Lowest FDA Level
Aflatoxin, ppb	77	< 1	1.1	0.01	0 %
Deoxynivalenol, ppm	77	0.2	1.9	0.5	0 %
Fumonisin, ppm	77	< 0.2	7.2	2.7	10 %
T-2 toxin, ppm	77	Not available	Not available	Not available	NA
Zearalenone, ppm	77	< 0.2	< 0.2	0.0	NA

Antimicrobial Residues?

- Virginiamycin (Lactrol) is the only FDA approved antimicrobial for use in ethanol production
 - FDA issued a letter of no objection 11/16/93
 - Added at rate of 2-6 ppm in the fermentation phase
 - Controls bacterial infections
 - Approved swine feed usage rate for Stafac is 5-100 g/ton of feed
 - Is destroyed by high temperatures (< 93° C during ethanol production
 - Dryer temperatures range from 93 to 232° C

Fat Stability of DDGS in Taiwan

Analysis	Week 1	Week 10
Peroxide value, mEq/kg	0.70	0.60
Free fatty acids, % as oleic	11.2	16.2

Peroxide values < 5 mEq/kg are considered acceptable for fat quality and there is no oxidative rancidity.

Effect of Moisture Treatments on Flow Rate and Discharge Score

Effect of Adding Flowability Agents on DDGS Flow Rate and Discharge Score

 $^{ab}(P < 0.05)$

Feeding DDGS to Grower-Finisher Pigs

Summary of Growth Performance Responses from Feeding Levels up to 30% DDGS in Grower-Finisher Diets

Performance Measure	Number of Published Studies	Increased	Reduced	Not Changed
ADG	25	1	6	18
ADFI	23	2	6	15
Gain/Feed	25	4	5	16

Effect of Formulating G-F Diets on a Digestible Amino Acid Basis, with Increasing Levels of DDGS, on Overall Growth Performance (Xu et al., 2007)

	0% DDGS	10% DDGS	20% DDGS	30% DDGS
Initial wt., kg	22.5	22.8	22.5	22.5
Final wt., kg	114	115	114	113
ADG, kg/d	0.92	0.92	0.92	0.91
ADFI, kg/d ^a	2.57	2.55	2.49	2.46
F/G ^a	2.79	2.76	2.71	2.70

^a Linear effect of DDGS level Data from 64 pens, 16 pens/treatment (Xu et al., 2007)

Summary of Carcass Characteristic Responses from Feeding Levels up to 30% DDGS in Grower-Finisher Diets

Performance Measure	Number of Published Studies	Increased	Reduced	Not Changed
Dressing Percentage	18	0	8	10
Backfat, mm	15	0	1	14
Loin Depth, cm	14	0	2	12
% Carcass Lean	14	0	1	13

Muscle Quality Characteristics from Grow-Finish Pigs Fed Diets Containing 0, 10, 20, and 30% DDGS (Whitney et al., 2006)

Trait	0 %	10 %	20 %	30 %	RMSE
L*a	54.3	55.1	55.8	55.5	2.9
Color score ^b	3.2	3.2	3.1	3.1	0.8
Firmness score ^c	2.2	2.0	2.1	2.1	0.5
Marbling score ^d	1.9	1.9	1.7	1.9	0.6
Ultimate pH	5.6	5.6	5.6	5.6	0.2
11-d purge loss, %	2.1 ^f	2.4 ^{fg}	2.8 ^g	2.5 ^{fg}	1.2
24-h drip loss	0.7	0.7	0.7	0.7	0.2
Cooking loss, %	18.7	18.5	18.3	18.8	2.6
Total moisture loss ^e , %	21.4	21.5	21.8	22.1	3.1
Warner-Bratzler sheer force, kg	3.4	3.4	3.3	3.3	0.5

^a 0 = black, 100 = white

^b 1=pale pinkish gray/white; 2=grayish pink; 3=reddish pink; 4=dark reddish pink; 5=purplish red; 6=dark purplish red ^c 1 = soft, 2 = firm, 3 = very firm

^d Visual scale approximates % intramuscular fat content (NPPC, 1999)

^e Total moisture loss = 11-d purge loss + 24-h drip loss + cooking loss

Summary of Belly Quality Characteristics from Feeding Levels up to 30% DDGS in Grower-Finisher Diets

Comparison of Selected Nutrients in Corn DDGS and Corn (As Fed Basis)

Nutrient	Corn DDGS	Corn
Swine ME, kcal/kg	3,507	3,420
Crude fat, %	10.2	3.3
Linoleic acid (C18:2), %	5.32	1.92
Oleic acid (C18:1), %	2.47	0.94

Current Pork Fat Quality Standards

- Based on Iodine Value (IV)
 - ratio of unsaturated:saturated fatty acids
- Maximum IV
 - 70 Danish Meat Research Institute
 - 72 National Pork Producers Council
 - 74 Boyd et al. (1997)
- Various adipose tissue sites are affected differently by dietary fatty acid composition

Effect of Dietary DDGS Level on Linoleic Acid (C18:2) Content of Pork Fat

Linear effect of DDGS level for all fat depot sites (P < 0.01) Diet × site (P < 0.01)

Effect of Dietary DDGS Level on Polyunsaturated Fatty Acid Content of Pork Fat

Diets

Linear effect of DDGS level for backfat and belly fat (P < 0.01) Linear effect of DDGS level for loin fat (P > 0.05) Diet × site (P < 0.01)

Effect of Dietary DDGS Level on Iodine Value of Pork Fat

Linear effect of DDGS level for all fat depot sites (P < 0.01) Diet × site (P < 0.01)

Fat Quality Characteristics of Market Pigs Fed Corn-Soy Diets Containing 0, 10, 20, and 30% DDGS (Whitney et al., 2006)

	0 %	10%	20%	30%
Belly thickness, cm	3.15 ^a	3.00 ^{a,b}	2.84 ^{a,b}	2.71 ^b
Belly firmness score, degrees	27.3ª	24.4 ^{a,b}	25.1 ^{a,b}	21.3 ^b
Adjusted belly firmness score, degrees	25.9 ^a	23.8 ^{a,b}	25.4 ^{a,b}	22.4 ^b
lodine number	66.8 ª	68.6 ^b	70.6 ^c	72.0 ^c

Means within a row lacking common superscripts differ (P < .05).

Summary of the Effects of Feeding DDGS Diets on Pork Quality

- Bellies will be less firm
 - Increased iodine value (linoleic acid content)
- **Bacon** will have an **oily appearance** from pigs fed > 20% DDGS diets
- Belly thickness may or may not be affected
- **Shelf life** and fat oxidation in fresh pork loins is **unaffected** with typical retail storage conditions for 28 days.
- Muscle quality is not affected
- Consumer taste panel acceptability is unaffected
 - Cooked pork loin
 - Cooked bacon
- Backfat iodine value of 70 can be met when feeding 30% DDGS in growing-finishing and withdrawing it 3 wks pre-harvest

Does Feeding DDGS Improve Gut Health of Growing Pigs?

Effect of Dietary Treatment on Lesion Length (21 d Post-Challenge)

^{*} Effect of disease challenge (*P* < .01).

Effect of Dietary Treatment on Lesion Severity (21 d Post-Challenge)

^{*} Effect of disease challenge (*P* < .01).

Effect of Dietary Treatment on Lesion Prevalence (21 d Post-Challenge)

^{*} Effect of disease challenge (*P* < .01).

Effects of Feeding DDGS Diets on Swine Manure Characteristics

Effects of Feeding Diets Containing DDGS on Manure Nutrient Composition and Gas and Odor Emissions

- Fecal excretion increases
 - Decrease in dry matter digestibility
- Urine excretion not affected
 - No effect on water disappearance

• N excretion increases

- Increased dietary crude protein (N)
- Minimized by using synthetic amino acids

• P excretion may vary

- Reduced when feeding < 20% DDGS + phytase and formulating on available P basis
- Increased when feeding > 20% DDGS due to excess dietary P
- No effect on:
 - Hydrogen sulfide
 - Ammonia
- Trend for an increase or no effect on odor detection levels

Opportunities for Using Liquid Distiller's By-Products

Benefits of Liquid Feeding vs. Dry Feeding

- Improved nutrient utilization (Jensen and Mikkelsen, 1998)
- Utilize inexpensive liquid by-products (Canibe and Jensen, 2003)
- Reduce environmental impact (Brooks et al., 2001)
- Improve animal performance (Lawlor et al., 2002)
- Enhance gut health (Brooks et al., 2001)
- Reduce the need for feed medications (Canibe and Jensen, 2003)
- Improve animal well-being (Canibe and Jensen, 2003)

Comparison of the Nutrient Content of Corn Condensed Solubles and Corn Steep Water (100% Dry Matter Basis)

Nutrient Digestibility of Non-fermented or Fermented Condensed Distillers Solubles (CDS) at 15% Dry Matter (de Lange, 2006).

	Control	Non-fermented CDS	Fermented CDS
No. pens	pens 6 6		6
Initial body wt, kg	23.5	23.3	23.4
Energy digestibility, %	81.6 ^{ab}	82.5 ^a	79.9 ^b
Protein digestibility, %	72.5 ^a	73.2 ^a	69.3 ^b
Fat digestibility, %	80.9 ^b	85.4 ^a	85.4 ^a

^{a,b} Means within rows with different superscripts differ (P < 0.05).

Growth Performance of Pigs Fed Liquid Diets Containing Non-fermented or Fermented CDS at 15% dry matter (de Lange, 2006).

^{a, b} Means within rows with different superscripts differ (P < 0.05).

Carcass Characteristics of Pigs fed Liquid Diets Containing Non-fermented CDS at 15% dry matter (de Lange, 2006).

	Control	Non-fermented CDS
Final body wt, kg	50.1ª	47.5 ^b
Carcass dressing, %	82.1	82.6
Backfat depth, mm	16.6	17.1
Loin depth, mm	54.3	53.7
Carcass lean yield, kg	61.1	60.9
Loin pH	5.74 ^a	5.80 ^b
Loin drip loss, %	9.63	8.83

^{a, b} Means within rows with different superscripts differ (P < 0.05).

Growth Performance of Pigs Fed Liquid Diets Containing Increasing Levels of Phytase Treated Steep Water (SW; de Lange, 2006).

	0% SW	7.5% SW	15% SW	22.5 % SW
No. of pens	4	4	4	4
Initial body wt., kg	69.1	68.8	68.8	69.3
Final body wt., kg	108.3	104.6	107.7	103.1
ADG, g/d	1191 ^a	1080 ^a	1063 ^a	899 ^b
ADFI, kg/d	2.76 ^a	2.49 ^{ab}	2.58 ^{ab}	2.29 ^b
F/G	2.33 ^a	2.30 ^a	2.42 ^{ab}	2.55 ^b

^{a,b} Means within rows with different superscripts differ (P < 0.05).

Carcass Characteristics of Pigs Fed Liquid Diets Containing Increasing Levels of Phytase Treated Steep Water (SW; de Lange, 2006).

	0% SW	7.5% SW	15% SW	22.5 % SW
No. of pens	4	4	4	4
Final body wt., kg	108.3	104.6	107.7	103.1
Carcass wt., kg	86.3	82.7	83.4	80.5
Loin depth, mm	58.2	58.9	56.4	58.3
Backfat depth, mm	18.1	18.7	18.0	17.1
Lean yield, %	60.3	60.3	60.5	60.1

^{a,b} Means within rows with different superscripts differ (P < 0.05).

University of Minnesota DDGS Web Site www.ddgs.umn.edu

We have developed a DDGS web site featuring:

- * nutrient profiles and photos of DDGS samples
- * research summaries
 - swine, poultry, dairy, & beef
 - DDGS quality
- * presentations given
- * links to other DDGS related web sites
- * international audiences

