

Overview DDGS facts Research funding sources Research "road map" to evaluate DDGS as a feed ingredient for swine Research highlights Future issues and opportunities

Compa	rison of l	Nutrient (Composit	ion (Dry Ma	atter
Corn G	luten Fee erm Mea	ed, Corn (l, and Bre	Gluten Me wer's Dr	eal, ied Grains	
	"New" Corn DDGS (UM)	Corn Gluten Feed (NRC)	Corn Gluten Meal (NRC)	Corn Germ Meal (Feedstuffs)	Brewer's Dried Grains (NRC)
Protein, %	30.6	23.9	66.9	22.2	28.8
Fat, %	10.7	3.3	3.2	1.1	7.9
NDF, %	43.6	37.0	9.7	No data	52.9
DE, kcal/kg	4011	3322	4694	No data	2283
ME, kcal/kg	3827	2894	4256	3222	2130
Lys, %	0.83	0.70	1.13	1.00	1.17
Met, %	0.55	0.39	1.59	0.67	0.49
Thr, %	1.13	0.82	2.31	1.22	1.03
Trp, %	0.24	0.08	0.34	0.22	0.28
Ca, %	0.06	0.24	0.06	0.33	0.35
Available P, %	0.80	0.54	0.08	0.17	0.21

Research Funding Sources

- Midwest DDGS Association
 internal checkoff (\$0.10/ton DDGS)
- MN Corn Growers Association
- MN Pork Producers Association
- IA Corn Growers Association
- CAMAS, Inc.
- Alpharma
- IL Corn Growers Association
- SD Corn Growers Association
- Hubbard Milling

Research "Road Map" to Determine DDGS Feeding Value for Swine

- Nutrient content and variability within and among plants
- DE and ME value
- Amino acid digestibility
- Phosphorus availability
- Maximum inclusion rates in each production phase
 - Limitations for use

Comparison of Proximate Analysis of "New Generation" DDGS vs. NRC (1998) (100% Dry Matter Basis)

Nutrient	"New Generation" DDGS	NRC (1998)
Dry matter, %	88.9 (1.7)	93.0
Crude protein, %	30.2 (6.4)	29.8
Fat, %	10.9 (7.8)	9.0
Crude fiber, %	8.8 (8.7)	4.8
Ash, %	5.8 (14.7)	No data
NFE, %	44.5 (6.1)	No data
ADF, %	16.2 (28.4)	17.5
NDF, %	42.1 (14.3)	37.2

DDGS	for Swi	ne (88% D	OM Basis)	
	"New" DDGS Calculated	"New" DDGS Trial avg.	"Old" DDGS Calculated	DDGS NRC (1998)
DE, kcal/kg	3488 Range 3418-3537	3528 Range 2975-4086	3409	3449
ME, kcal/kg	3162 Range 3087-3215	3367 Range 2820-3916	3098	2672

Comparison of Amino Acid Composition of DDGS (88% dry matter basis)

	"New" DDGS	"Old" DDGS	DDGS (NRC, 1998)
Lysine, %	0.75 (17.3)	0.47 (26.5)	0.59
Methionine, %	0.63 (13.6)	0.44 (4.5)	0.48
Threonine, %	0.99 (6.4)	0.86 (7.3)	0.89
Tryptophan, %	0.22 (6.7)	0.17 (19.8)	0.24
Valine, %	1.32 (7.2)	1.22 (2.3)	1.23
Arginine, %	1.06 (9.1)	0.81 (18.7)	1.07
Histidine, %	0.67 (7.8)	0.54 (15.2)	0.65
Leucine, %	3.12 (6.4)	2.61 (12.4)	2.43
Isoleucine, %	0.99 (8.7)	0.88 (9.1)	0.98
Phenylalanine, %	1.29 (6.6)	1.12 (8.1)	1.27

Comparison of Apparent Ileal Digestible Amino Acid Composition of DDGS for Swine (88% dry matter basis)

	"New" DDGS	"Old" DDGS	DDGS (NRC, 1998)
Lysine, %	0.39	0.00	0.27
Methionine, %	0.28	0.21	0.34
Threonine, %	0.55	0.32	0.49
Tryptophan, %	0.13	0.13	0.12
Valine, %	0.81	0.45	0.77
Arginine, %	0.79	0.53	0.77
Histidine, %	0.45	0.26	0.40
Leucine, %	2.26	1.62	1.85
Isoleucine, %	0.63	0.37	0.64
Phenylalanine, %	0.78	0.60	0.96

Comparison of Phosphorus Level and Relative Availability of DDGS for Swine (88% dry matter basis)

	"New" DDGS	"Old" DDGS	DDGS NRC (1998)	Corn NRC (1998)
Total P, %	0.78 Range 0.62-0.87	0.79	0.73	0.25
P Availability, %	90 Range 88-92	No data	77	14
Available P, %	0.70	No data	0.56	0.03

Comparison of Mineral Analysis of "New Generation" DDGS, "Old Generation" DDGS, and NRC (1998) (100% Dry Matter Basis)

Mineral	"New Generation" DDGS	"Old Generation" DDGS	NRC (1998)
Ca, %	0.06 (57.2)	0.44	0.22
Ρ, %	0.89 (11.7)	0.90	0.83
К, %	0.94 (14.0)	0.99	0.90
Mg, %	0.33 (12.1)	0.40	0.20
S, %	0.47 (37.1)	0.51	0.32
Na, %	0.24 (70.5)	0.28	0.27
Zn, ppm	98 (80)	80	86
Mn, ppm	16 (33)	50	26
Cu, ppm	6 (20)	14	61
Fe, ppm	120 (41)	219	276

Why is there so much interest in feeding DDGS to swine?

- "New Generation" DDGS is high in digestible nutrients
- Economical partial replacement for:
 - corn
 - soybean meal
 - dicalcium phosphate
- Increasing production and supply
- Unique properties
 - reduce P excretion in manure
 - increase litter size weaned/sow
 - gut health benefits?

Containing 0 to 3	30%	DDG	S	
	0 %	10%	20%	3
Belly thickness, cm	3.15ª	3.00 ^{a,b}	2.84 ^{a,b}	2
Belly firmness score, degrees	27.3ª	24.4 ^{a,b}	25.1 ^{a,b}	2
Adjusted belly firmness score, degrees	25.9ª	23.8 ^{a,b}	25.4 ^{a,b}	2
lodine number	66.8ª	68.6 ^b	70.6 ^c	7

Bulk Density of "New Generation" DDGS

- DDGS samples from 16 "New Generation" plants
 - Avg. bulk density = 35.7 lbs/cubic ft.
 - Std. deviation among plants = 2.79 lbs/cubic ft.
 - Coefficient of variation among plants = 7.8%
 - Range in bulk density among plants:
 - 30.8 to 39.3 lbs/cubic ft.

NIR Calibrations for DDGS

ĸ	Rmsep,%	R ²	CV,%
0.89	0.064	.79	16.2
0.81	0.044	.66	14.2
0.73	0.046	.53	6.2
0.87	37	.76	1.9
	0.89 0.81 0.73 0.87	0.89 0.064 0.81 0.044 0.73 0.046 0.87 37	0.89 0.064 .79 0.81 0.044 .66 0.73 0.046 .53 0.87 37 .76

Amino acid L* a*	h*
Lvs 67 NS	77
Cys .67 NS	.74

Current and Future DDGS Research

- Impact of feeding DDGS on pre-harvest food safety (Salmonella)
 Mindy Spiele PhD condidate
- Mindy Spiehs, PhD candidate
- Spray-dried distiller's solubles fractions in baby pig diets
 Jeff Knott, PhD candidate
- Impact of adding DDGS and phytase on manure P content and chemical forms of P
 Mark Whitney, PhD candidate
- Correlation between DDGS color, ADICP, and true amino acid digestibility in poultry
- Methods to improve flowability and pelleting of DDGS
 collaboration with AURI
- Stability and preservation of DDGS in various climates

