

Production of DDGS Co-product from the dry-milling of corn for production of ethanol 1 bu of corn yields: 2.7 gallons of ethanol 18 lbs of DDGS 18 lbs of CO₂ Other grains can be used Sorghum Level of production has increased recently: Increased number and capacity of ethanol plants ↑ supply and ↓ cost of DDGS in Midwest

Historical Use of DDGS Used in ruminant diets primarily Not used in swine or poultry diets: Lack of nutritional information Variability of nutrient content Viewed as having low energy density Poor amino acid profile Digestibility of amino acids Cost and supply

DDGS Swine Research Conducted at Univ. of MN 12 experiments conducted so far: DDGS Database Determine DE and ME Values for DDGS (2) Nutrient Balance and Gas/Odor Emission Apparent Ileal Amino Acid Digestibility P Availability Study Grow-Finish Performance/Carcass Quality Sow Reproductive Performance Nursery Performance Gut Health / Ileitis (3)

DDGS Nutrient Database

Nutrient	MN-SD*	OMP	NRC(1998)	
DM	88.9	88.3	93.0	
Crude fiber				
DE*				
Crude protein	30.2	28.1	29.8	
Lys				
Met	0.55	0.50	0.54	
Thr	1.13	0.98	1.01	
Trp	0.25	0.19	0.27	

* Number of samples = 120 (10 plants, 12 samples each), DM basis

DDGS Nutrient Database

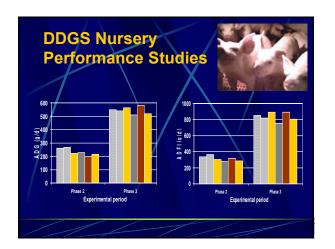
- Higher nutrient content compared to
 - NRC (1998)
 - Sample from "old generation" plant (OMP)
- Variation within and among plants
 - Less than in the past
 - Lysine most variable (CV = 17%)
 - Color differences
- Some year-to-year differences

Energy Balance Studies

- ME and DE values obtained were significantly higher than NRC 1998 but were highly variable
 - 3380 to 5905 kcal DE/kg3315 to 5930 kcal ME/kg
- (3963 kcal DE/kg) (3917 kcal ME/kg)
- Calculated DE and ME values:
 - DE kcal/kg = 3965 (CV=2.2%) Range: 3883 to 4020 kcal/kg
 - ME kcal/kg = 3592 (CV=2.4%) Range: 3510 to 3654 kcal/kg

DDGS Apparent Ileal Amino Acid Digestibility Comparison

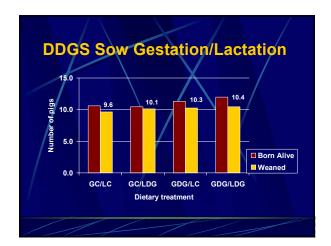
AA	"New Generation" DDGS	"Old Generation" DDGS	NRC(1998)
Lys	0.83 (53) 0.44	0.68 (0) 0.00	0.67 (46) 0.31
Met	0.55 (58) 0.32	0.49 (49) 0.24	0.54 (72) 0.39
Thr	1.13 (55) 0.62	1.01 (36) 0.36	1.11 (50) 0.56
Trp	0.24 (63) 0.15	0.27 (56) 0.15	0.20 (70) 0.14

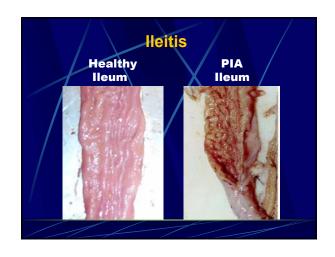

DDGS P Availability Study

- Phosphorus balance study
- Regression analysis of P excretion & retention
 - Relative to P intake for DDGS and Dical Phosphate
 - Excretion 87.5% availability of P (r² = .47)
 - Retention 92.2% availability of P (r² = .72)
 - DDGS = 0.89% total P x 90% avail = 0.80% avail P
- Corn =
- 0.28% total P x 14% avail = 0.04% avail P
- SBM (44% CP) = 0.65% total P x 31% avail = 0.20% avail P

DDGS Nursery Performance Studies

- 2 experiments
 - 19 and 17 days of age (15.6 vs 11.6 lbs)
 - Commecial pelleted diet first 4 days
 - 0, 5, 10, 15, 20, or 25% DDGS
 - Formulated on App III Dig AA basis
 - Phase 2 (2 weeks), Phase 3 (3 weeks)
- Similar growth, feed intake, and G/F
 - Slight lag during Phase 2 for younger pigs, but they caught up by end of nursery period

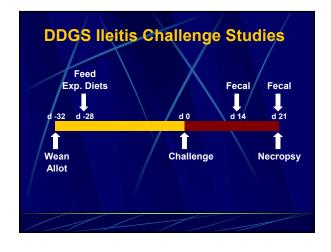



DDGS Grow-Finish Performance and Carcass Composition Study

- Diets formulated to contain same total lysine, phosphorus, and ME
 - 240 crossbred pigs (24 pens), 60 250 lbs
 - Diets contained 0, 10, 20, or 30% DDGS
 - 5-phase feeding program
 - Diet switches based on average pen weight
 - At slaughter, carcass/meat/fat quality measurements conducted by Shanks/Wulf (SDSU)

DDGS Grow-Finish Performance and Carcass Composition Study Performance Growth rate similar at 0 and 10% DDGS levels Drop at 20 & 30% levels No difference in feed intakes Decrease in G/F at 30% DDGS inclusion level Carcass composition We lean and backfat depth unaffected Importance of using available vs. total amino acid levels when formulating and using DDGS

DDGS Sow Gestation/Lactation Study just completed 2 x 2 factorial arrangement of treatments: Gestation: 0 or 50% DDGS Lactation: 0 or 20% DDGS Followed through 2 parities (mixed parity sows) 93 sows initially, 49 sows second cycle Initial results suggest an increase of ≅ 0.75 pig weaned for the 2nd litter with DDGS feeding Insoluble fiber effect?



DDGS Ileitis Challenge Studies Field reports: Beneficial effect of adding 5 to 10% DDGS in grow-finish diets DDGS contains low levels of soluble (0.7 %) and high levels of insoluble (42.2 %) fiber (Shurson et al., 2000) Low soluble fiber diets may reduce the proliferation of pathogenic organisms in the GI tract (Hampson, 1999). DDGS contains yeast cells May have nutraceutical properties

DDGS Ileitis Challenge Studies Experiment 1: Negative control, corn-soybean meal diet PC: Positive control, corn-soybean meal diet* D10: 10% DDGS diet* D20: 20% DDGS diet* Experiment 2: NC, PC, and D10 same as Experiment 1 PC+AR: Corn-soybean meal diet with antimicrobial regimen* D10+AR: 10% DDGS diet with antimicrobial regimen* Experiment 3: NC, PC, and D10 same as Experiment 1 • SH: 5% Soy Hulls diet* • PA: Polyclonal antibody product with soy hulls

DDGS Ileitis Challenge Studies Just completed 3rd challenge study: Variable results with DDGS in diet 1 study – positive effect on lesion prevalence, length, and severity in ileum and colon 10% inclusion rate Similar to effect of an antimicrobial/antibidic treatment (BMD/CTC) 2 studies – no beneficial effect of DDGS inclusion Dosage rate very high in one study Probably higher in all studies than would occur in field Other potential nutritional strategies: Soybean hulls, polyclonal antibody product

Quality Criteria - Establish relationship with supplier - Quality control measures in place - Nutrient specs, mycotoxins, handling characteristics - Consistency of product - Proportion of solubles standardized - Grading system in place? - Color: generally, lighter is better - Indicates higher amino acid digestibility - Smell: shouldn't have burnt smell - May affect palatability - Can indicate protein damage

