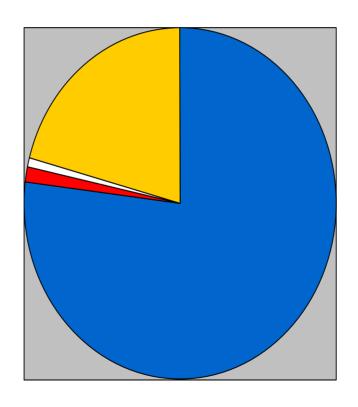


Dr. Jerry Shurson
Department of Animal Science
University of Minnesota



DDGS Production and Use

- 3.2 to 3.5 million metric tonnes (MT) of DDGS are produced in North America/year
 - ~ 900,000 MT produced in MN-Dakota region
 - ~ 700,000 MT exported to the EU
 - ~ 2.65 million MT fed in U.S. and Canada
 - ~ 2.58 million MT (80%) fed to ruminants
 - ~ 45,000 MT fed in MN turkey industry
 - < 27,000 MT used in swine diets</p>

Distribution of Use of DDGS Produced in North America

Why Hasn't DDGS Been Used in Swine Diets?

- Variability of nutrient levels
 - type of grain used
 - variability of corn quality
 - amount of solubles added
- Low amino acid digestibility
 - variable heating and drying temperatures
 - excessive heating = dark color
- High crude fiber
 - low and variable DE and ME estimates

Why Hasn't DDGS Been Used in Swine Diets?

- Amino Acid Profile
 - amino acid balance not well suited to the pig
 - low lysine
 - amino acid imbalance is amplified 3 fold in DDGS vs corn
- Limited recent information on use of DDGS in swine diets
- Cost competitiveness relative to commonly used energy and amino acid ingredients

Why is There Renewed Interest in Feeding DDGS to Swine?

- Increasing quantities of DDGS
 - increased ethanol production to meet oxygenated fuel demand
- New ethanol plants
 - improved fermentation technology and processing = higher feeding value?
- Reduced nutrient variability?
 - corn supply from smaller geographic regions
- Higher P availability = reduced P excretion in manure
- Reduced odor emissions?

How Do Nutrient Levels of MNSD DDGS Compare to Published Values?

MNSD DDGS has Higher Nutrient Levels and Digestibility than Other DDGS Sources

Energy


- Digestible energy (DE) and metabolizable energy (ME) > corn
- Increase in fiber content is offset with increase in fat content

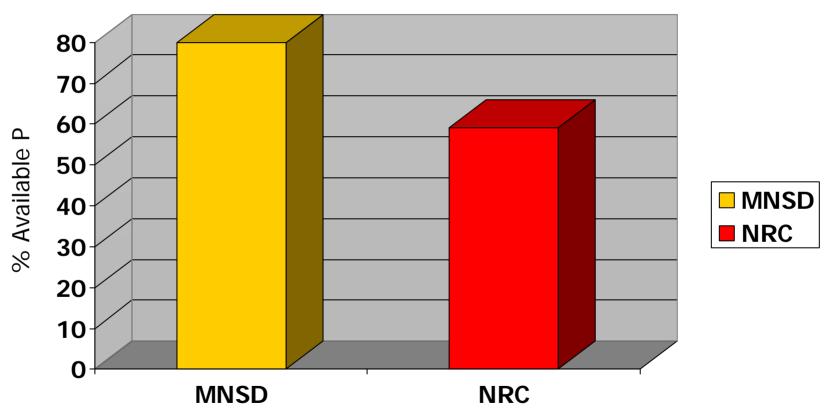
Amino acids

- Poor amino acid balance
- Higher digestible amino acids levels

C.V. = 34.0

MNSD DDGS Apparent Digestible Amino Acid Levels vs. DDGS from an Older Midwestern Plant and Published Values

App. Dig. AA	MNSD	MW	NRC (1998)
Lysine, %	.44	.00	.31
Methionine, %	.32	.24	.39
Threonine, %	.62	.36	.56
Tryptophan, %	.15	.15	.14
Valine, %	.92	.51	.88



MNSD DDGS is Higher in Phosphorus Availability Compared to Corn and Published Values

- Available P in DDGS is dramatically improved compared to corn (0.80% vs 0.04%).
- Available P in MNSD DDGS is higher than published values (0.80% vs. 0.59%)

MNSD DDGS Available Phosphorus Levels vs. Published Values

DDGS is Often an Economical Addition to Swine Diets

- Replaces a portion of:
 - Corn
 - Soybean meal
 - Dicalcium phosphate

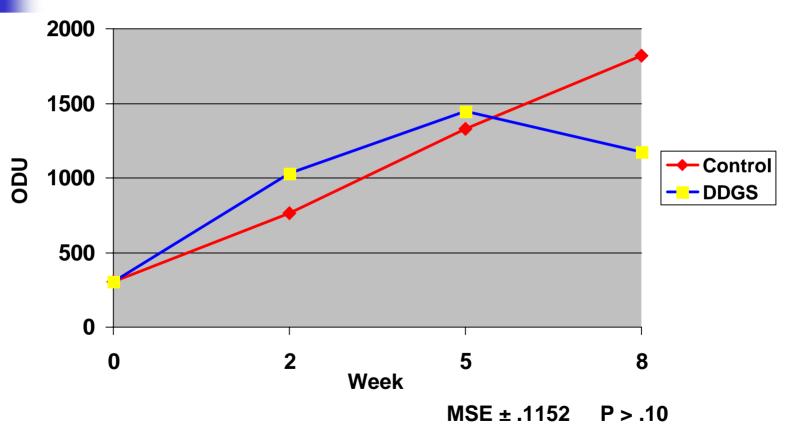
What Are the Effects of DDGS on Manure Nutrient Management and Air Quality?

THE BAD NEWS

- Manure N content increases due to:
 - high crude protein:lysine ratio
 - reduced a.a. digestibility compared to corn & SBM
- Excess N minimized by adding synthetic amino acids to diets
- High levels of DDGS may reduce pig performance due to the energy cost of removing excess N
- May increase ammonia emissions?

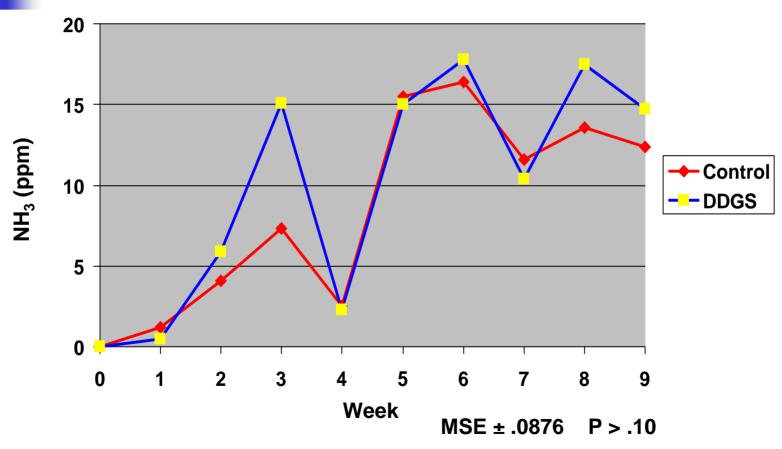
Effects of DDGS on Manure Phosphorus Excretion

- THE GOOD NEWS
 - Manure P content is reduced due to:
 - DDGS has more available P compared to corn and soybean meal
 - Amount of supplemental inorganic P or phytase in the diet is decreased.
 - Decreased diet cost

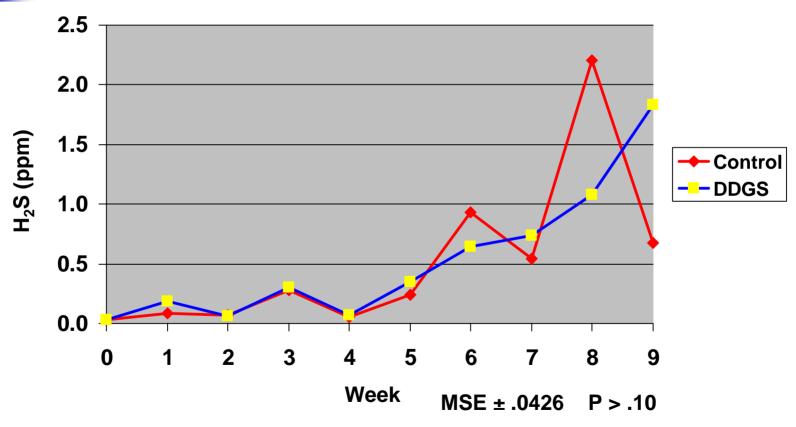


Effects of DDGS on Air Quality

 Feeding DDGS has no positive or negative effects on gas and odor emissions.



Effect of Dietary Treatment on Manure Odor Detection Threshold



Effect of Dietary Treatment on Ammonia Emission

Effect of Dietary Treatment on Hydrogen Sulfide Emission

Recommended Usage Rates of DDGS in Swine Diets

- Nursery pigs up to 5%
- Grow-finish pigs up to 20%
- Gestating sows up to 50%
- Lactating sows up to 20%

MNSD DDGS:

- has higher levels and digestibility of most key nutrients
- has less variability in nutrient levels
- does not reduce or improve air quality
- will reduce P excretion
- is often can be an economical addition to swine diets

Evaluation of the Feeding Value of MNSD DDGS

Ethanol plants participating in DDGS evaluation:

Aberdeen, SD Bingham Lake, MN Luverne, MN Preston, MN Winnebago, MN Benson, MN Claremont, MN Morris, MN Scotland, SD Winthrop, MN