

Distillers Grains Markets for the U.S. and Argentina

Who We Are

- CHS is the nation's leading cooperative, owned by farmers, ranchers and co-ops across the United States.
- A diversified, global energy, grains and foods business, CHS is committed to helping producers, co-ops and other stakeholders grow their businesses.

CHS System Locations

Each dot represents a CHS location, member company or business affiliation

Global Grain Operations

Exclusive Marketing Agreements with CHS

	Monthly capacity in			
Plant Name	Origin City	short tons	Rail Line	
ABSOLUTE ETHANOL	Mona. Ia	27.000	CP/CN	
BIG RIVER UNITED ENERGY	DYERSVILLE, IA	30,000	CN	
BLUE FLINT ETHANOL (UNDERWOOD)	COAL CREEK, ND	13,000	СР	
BUSHMILLS ETHANOL	ATWATER, MN	13,000	BN	
CARBON GREEN BIOENERGY	WOODBURY, MI	13,000	CSXT	
CARDINAL ETHANOL	WINCHESTER, IN	27,000	CSXT	
CENTER ETHANOL	SAUGET, IL	15,000	TRRA/ALS	
CENTRAL INDIANA ETHANOL	MARION, IN	1300	NS	
GLACIAL LAKES ENERGY	WATERTOWN, SD	27,000	BN	
GLACIAL LAKES ENERGY	MINA, SD	27,000	BN	
HIGHWATER ETHANOL	LAMBERTON, MN	15,000	CP	
HOMELAND ENERGY SOLUTIONS	NEW HAMPTON, IA	30,000	CP	
IROQUIOS BIO-ENERGY(RENSSELAER)	PLEASANT RIDGE, IN	13,000	CSXT	
LINCOLN LAND AGRI ENERGY	ROBINSON, IL	13,000	INRD	
LITTLE SIOUX CORN PROCESSORS	MARCUS, IA	24,000	CN	
NUGEN ENERGY	MARION, SD	30,000	BN	
PATRIOT ETHANOL	ANNAWAN, IL	27,000	IAIS	
RED TRAIL ENERGY	RICHARDTON, ND	13,000	BN	
REDFIELD ENERGY	REDFIELD, SD	13,000	BN	
SIOUXLAND ENERGY(JACKSON)	TOM LYNCH, NE	13,000	BN	
UNITED WISCONSIN GRAIN PRODUCERS	FRIESLAND,WI	13,000	UP	
WESTERN NY ENERGY (MEDINA)	SHELBY, NY	13,000	FRR	

Take all production Eliminate credit risk Manage transportation Maximize value Provide access to nutritional advice to support customer use Provide industry leadership

SGS North America 241 34th Ave Brookings, SD 57006

Certificate

of Analysis

Analysis	Result	Units	Detection Limit	Uncertainity	Limits	Method
Hunter L Value	58.21		0.00			ColorFlex User's Guide, Ver. 2.5
Phosphorous content as received	1.00	%(m/m)	0.01			AOAC 968.08
Potassium content as received	1.11	%(m/m)	0.00			AOAC 968.08
Calcium content as received	0.02	%(m/m)	0.01			AOAC 968.08
Magnesium content as received	0.34	%(m/m)	0.00			AOAC 968.08
Zinc content as received	56.98	PPM	1.48			AOAC 968.08
Manganese content as received	12.59	PPM	0.09			AOAC 968.08
Copper content as received	5.09	PPM	0.08			AOAC 968.08
Iron content as received	68.99	PPM	0.24			AOAC 968.08
Sodium content as received	0.21	%(m/m)	0.00			AOAC 968.08
Sulfur content as received	0.57	%(m/m)	0.02			AOAC 968.08
Sugar as Invert	1.07	%	0.00			

Analysis	As Received	On Dry Matter	Units	Method
Starch Content	3.100	3.421	g/100g	AOAC996.11
Moisture content	9.39		%(m/m)	NFTA 2.2.2.5
Drymatter content	90.61		%(m/m)	NFTA 2.2.2.5
Crude ash content	4.372	4.825	%(m/m)	AOAC 942.05
Crude fiber content	6.50	7.17	%(m/m)	AOAC 962.09
Acid detergent fiber	14.43	15.93	%(m/m)	Calculation
Total digestible nutrients	73.78	81.42	%(m/m)	Calculation
Net Energy Lactation	0.77	0.85	Mcal/lb	Calculation
Net Energy Maintenance	0.85	0.94	Mcal/lb	Calculation
Net Energy Gain	0.56	0.61	Mcal/lb	Calculation
Digestible Energy	1.601	1.766	Mcal/lb	Calculation
Metabolizable Energy	1.45		Mcal/lb	Calculation
NDF	25.41		%	ANKOM Technology
				Method 6
Crude fat content	9.79	10.80	%(m/m)	AOAC 2003.06
Crude protein content	27.79	30.67	%(m/m)	AOAC 972.43 (Nx6.25)

U.S. DDG Production and Exports

Marketing Year (Oct - Sept)

Composition of Domestic Usage

 Beef Cattle
 Dairy Cattle
 Swine
 Poultry

Oct. – Sep. Crop Year

DDG Balance Table

1 Aco	2006- 07	2007-08	2008-09	2009-10	2010-11	2011-12	2012-13 Est
Carryin (Sep 1)	3		5	T			
Production	13.951	21,294	26,422	33,253	37.007	36,696	34.758
Importo	404	4.45	0.54		404	250	400
imports	191	145	251	409	434	300	400
Total Supply	14,141	21,439	26,673	33,783	37,438	37,046	35,158
Domestic Use	12,361	17,518	21,704	25,484	29,136	29,346	28,408
Exports	1,780	3,921	4,969	8,299	8,302	7,700	6,750
Total Use	14,141	21,439	26,673	33,783	37,438	37,046	35,158
Carryout (Aug 31)							
Export ratio	12.76%	18.41%	18.81%	24.96%	22.43%	20.98%	19.42%
						X 1,000 I	Metric Tons

U.S. Cattle on Feed

Weekly U.S. Fuel Ethanol Production

(Thousand Barrels per day)

in thousand barrels

ROSENTHAL COLLINS GROUP

Ethanol Production Margins

MONSANTO

LaSalle Group ROSENTHAL COLLINS GROUP

DDG NET EXPORTS (+)/NET IMPORTS (-) BY STATE, 12-13 Based on Ali Animais, PRX Formulas (Not surveyed by USDA), 000MT

Pro Exporter

Export Table

COUNTRY	2010 YR	2011 YR	Jan/Jul 2011	Jan/Jul 2012	% Change	Net Change
World Total	9,027,043	7,635,747	4,407,557	4,608,984	5	201,427
Mexico	1,650,308	1,774,736	1,086,730	950,536	-13	-136,194
China	2,531,452	1,370,368	638,301	1,488,336	133	850,035
Canada	1,042,215	746,374	<mark>465,107</mark>	376,642	-19	<mark>-88,4</mark> 65
Vietnam	430,236	494,599	267,502	235,529	-12	-31,973
Korea, South	506,474	300,93 <mark>4</mark>	170,697	192,454	13	21,757
Japan	217,780	300,699	158,346	221,173	40	62,827
Indonesia	251,073	246,007	150,340	92,932	-38	<mark>-57,4</mark> 08
Taiwan	144,485	234, <mark>877</mark>	107,004	113,242	6	<mark>6,2</mark> 38
lsrael(*)	162,695	214,074	118,182	76,286	- <mark>35</mark>	<mark>-41,8</mark> 96
Thailand	291,070	202,633	141,304	101,177	<mark>-</mark> 28	-40,127

Metric Tons

U.S. Grains Council

FOB US GULF & CORN PRICES

FOB US GULF DDGS & CORN PRICES

US Grains Council

HS Total US DDG exports and US DDG exports to China monthly, tonnes

Top U.S. Export Container Grain Commodities

www.ddgs.umn.edu

Argentina DDGS Demand

Using average U.S. DDGS inclusion rates Argentina could consume an estimated 10 million metric tons of 10% moisture DDGS, or that dry matter equivalent in wet distillers at cattle feed lots alone, not including pasture fed cattle. Argentina's Dairy industry could consume an additional 3 million metric tons

Potential for DDGS export

DDGS exports well to countries currently buying corn and/or soybeans Loading vessels with a hold or two of DDGS along with heavy grain helps to overcome DDGS's light test weight and is the preferred delivery method for many U.S. DDG export customers.

World price of DDGS in today's market

Based on DDGS bids and vessel freight available the week of 9/17/2012, high quality DDGS would be worth \$352 per metric ton loaded in a vessel in an Argentinean port, provided there was no export/tax imposed.

Dry-grind Ethanol Production Processes and Co-products (Erickson et al., 2005)

Composition of Selected Nutrients Among 32 DDGS Sources (DM basis)

Nutrient	Average (CV, %)	Range
Dry matter, %	89.3	87.3 - 92.4
Crude protein, %	30.9 (4.7)	28.7 - 32.9
Crude fat, %	10.7 (16.4)	8.8 - 12.4
Crude fiber, %	7.2 (18.0)	5.4 - 10.4
Ash, %	6.0 (26.6)	3.0 - 9.8
Swine ME, kcal/kg (predicted)	3810 (3.5)	3504 - 4048
Lysine, %	0.90 (11.4)	0.61 - 1.06
Phosphorus, %	0.75 (19.4)	0.42 - 0.99

Source: University of Minnesota

The most expensive nutritional components in animal feeds

1. Energy

- Ruminants
 - NE_m, NE_g, NE_l, TDN
- Swine
 - DE, ME, NE
- Poultry
 - AME_n, TME_n

2. Protein and amino acids

- Ruminants crude protein (N x 6.25)
- Non-ruminants digestible amino acids

3. Phosphorus

Non-ruminants – digestible or available P

DDGS is Primarily an Energy Source

Ruminants

- 102-127% energy value of corn
- Swine
 - 100% energy value of corn
- Poultry
 - 85% energy value of corn

Why is there a difference?

- DDGS is a high fiber ingredient
- Ruminants can convert fiber to energy much more effectively than swine and poultry

Amino Acid Content in Corn, DDGS, and Soybean Meal

Positives and Negatives of Nutrients in DDGS

- Positives
 - High energy
 - Fat
 - Fiber
 - ruminants
 - Excess protein
 - Moderate source of protein and amino acids
 - High digestible P
 - non-ruminants
 - Xanthophyll
 - poultry

- Negatives
 - High fiber
 - non-ruminants
 - Poor protein quality
 - non-ruminants
 - Variable amino acid digestibility
 - non-ruminants
 - May contain high sulfur content
 - ruminants
 - May contain high sodium content
 - poultry

DDGS Color, Nutrient Content and Digestibility Varies Among Sources

Lower Quality, Less Digestible DDGS High Quality, Highly Digestible DDGS

Negative effect of dark color

•May indicate excessive heat used during drying •Maillard reaction-reduces amino acid digestibility

May indicate increased lipid oxidation

May indicate reduced xanthophyll content

Benefits and Limitations of DDGS for Lactating

Limitations

adequate forage in the ration

Benefits

More protein and energy than corn
Feed at up to 20% of ration dry matter
Highly digestible fiber source
Fewer digestive upsets
Low protein (lysine) quality
Add other supplements high in lysine
Manure P excretion increases at high feeding levels
No effect on milk fat if

Fewer digestive upsetsCan be a partial forage replacement

Highly palatable

Nutrient Content (DM basis) of DDGS for Ruminants

Nutrient	DDGS
Crude protein, %	30.8
RUP, % of CP	55.0
NE _L , Mcal/kg	2.26
NE _M , Mcal/kg	2.07
NE _G , Mcal/kg	1.41
NDF, %	39.0
ADF, %	16.1
Crude fat, %	11.2
Ash, %	5.7
Calcium, %	0.05
Phosphorus, %	0.79
Magnesium, %	0.31
Potassium, %	1.02
Sodium, %	0.26
Sulfur, %	0.69

How Much DDGS Can Be Fed to Lactating Dairy Cows?

 Recommend a maximum of ~ 20% of ration dry matter •4.5 - 6 kg/day (DDGS) No palatability problems At 30% of ration DM May decrease DM intake May decrease milk yield May decrease milk protein content

Benefits and Limitations for Finishing Feedlot Cattle Benefits Limitations

•120 to 150% the energy value of corn
•3x higher in protein than corn
•Feed up to 40% of ration dry matter to replace corn
•Feed excess protein and P
•Highly digestible fiber source
•Fewer digestive upsets
•No effect on carcass yield, quality, or eating characteristics of beef

Need to supplement calcium to achieve proper Ca:P ratio
Avoid urinary calculi
Manure N and P excretion
increases at high feeding level
Monitor sulfur level of water and diet (< 0.4% ration DM)
Avoid polioencephalmalacia

Dry Matter Intake of Finishing Steers Fed Rations Containing Up to 40% DDGS

DMI, kg/d

Source: Klopfenstein et al. (2008) Meta-analysis of 5 experiments Linear (P < 0.01) and quadratic (P < 0.08) effects of DDGS level

Growth Performance of Finishing Steers Fed Rations Containing Up to 40% DDGS

Yield Grade of Finishing Steers Fed Rations Containing Up to 40% DDGS

Yield grade

Klopfenstein et al. (2008) Meta-analysis of 5 experiments Linear (P < 0.04) effect of DDGS level

Marbling Score of Ribeye Muscle from Finishing Steers Fed Rations Containing Up to 40% DDGS

